Styrene-based block copolymers are promising materials for the development of a polymeric heart valve prosthesis (PHV), and the mechanical properties of these polymers can be tuned via the manufacturing process, orienting the cylindrical domains to achieve material anisotropy. The aim of this work is the development of a computational tool for the optimization of the material microstructure in a new PHV intended for aortic valve replacement to enhance the mechanical performance of the device. An iterative procedure was implemented to orient the cylinders along the maximum principal stress direction of the leaflet. A numerical model of the leaflet was developed, and the polymer mechanical behavior was described by a hyperelastic anisotropic constitutive law. A custom routine was implemented to align the cylinders with the maximum principal stress direction in the leaflet for each iteration. The study was focused on valve closure, since during this phase the fibrous structure of the leaflets must bear the greatest load. The optimal microstructure obtained by our procedure is characterized by mainly circumferential orientation of the cylinders within the valve leaflet. An increase in the radial strain and a decrease in the circumferential strain due to the microstructure optimization were observed. Also, a decrease in the maximum value of the strain energy density was found in the case of optimized orientation; since the strain energy density is a widely used criterion to predict elastomer's lifetime, this result suggests a possible increase of the device durability if the polymer microstructure is optimized. The present method represents a valuable tool for the design of a new anisotropic PHV, allowing the investigation of different designs, materials, and loading conditions.

References

1.
Akutsu
,
T.
,
Dreyer
,
B.
, and
Kolff
,
W. J.
,
1959
, “
Polyurethane Artificial Heart Valves in Animals
,”
J. Appl. Physiol.
,
14
(
6
), pp.
1045
1048
.
2.
Bernacca
,
G. M.
,
Straub
,
I.
, and
Wheatley
,
D. J.
,
2001
, “
Mechanical and Morphological Study of Biostable Polyurethane Heart Valve Leaflets Explanted From Sheep
,”
J. Biomed. Mater. Res.
,
61
(
1
), pp.
138
145
.
3.
Claiborne
,
T. E.
,
Sheriff
,
J.
,
Kuetting
,
M.
,
Steinseifer
,
U.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021021
.
4.
Ghanbari
,
H.
,
Viatge
,
H.
,
Kidane
,
A. G.
,
Burriesci
,
G.
,
Tavakoli
,
M.
, and
Seifalian
,
A. M.
,
2009
, “
Polymeric Heart Valves: New Materials, Emerging Hopes
,”
Trends Biotechnol.
,
27
(
6
), pp.
359
367
.
5.
Mackay
,
T. G.
,
Wheatley
,
D. J.
,
Bernacca
,
G. M.
,
Fisher
,
A. C.
, and
Hindlet
,
C. S.
,
1996
, “
New Polyurethane Heart Valve Prosthesis: Design, Manufacture and Evaluation
,”
Biomaterials
,
17
(
19
), pp.
1857
1863
.
6.
Rahmani
,
B.
,
Tzamtzis
,
S.
,
Ghanbari
,
H.
,
Burriesci
,
G.
, and
Seifalian
,
A. M.
,
2012
, “
Manufacturing and Hydrodynamic Assessment of a Novel Aortic Valve Made of a New Nanocomposite Polymer
,”
J. Biomech.
,
45
(
7
), pp.
1205
1211
.
7.
Bernacca
,
G. M.
,
Mackay
,
T. G.
, and
Wilkinson
,
R.
,
1995
, “
Calcification and Fatigue Failure in a Polyurethane Heart Valve
,”
Biomaterials
,
16
(
4
), pp.
279
285
.
8.
Bernacca
,
G. M.
,
Mackay
,
T. G.
,
Wilkinson
,
R.
, and
Wheatley
,
D. J.
,
1997
, “
Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure
,”
J. Biomed. Mater. Res.
,
34
(
3
), pp.
371
379
.
9.
Bezuidenhout
,
D.
,
Williams
,
D. F.
, and
Zilla
,
P.
,
2015
, “
Polymeric Heart Valves for Surgical Implantation, Catheter-Based Technologies and Heart Assist Devices
,”
Biomaterials
,
36
, pp.
6
25
.
10.
Kheradvar
,
A.
,
Groves
,
E. M.
,
Dasi
,
L. P.
,
Alavi
,
S. H.
,
Tranquillo
,
R.
,
Grande-Allen
,
K. J.
,
Simmons
,
C. A.
,
Griffith
,
B.
,
Falahatpisheh
,
A.
,
Goergen
,
C. J.
,
Mofrad
,
M. R. K.
,
Baaijens
,
F.
,
Little
,
S. H.
, and
Canic
,
S.
,
2015
, “
Emerging Trends in Heart Valve Engineering—Part I: Solutions for Future
,”
Ann. Biomed. Eng.
,
43
(
4
), pp.
833
843
.
11.
Balguid
,
A.
,
Rubbens
,
M. P.
,
Mol
,
A.
,
Bank
,
R. A.
,
Bogers
,
A. J. J. C.
,
van Kats
,
J. P.
,
de Mol
,
B. A. J. M.
,
Baaijens
,
F. P. T.
, and
Bouten
,
C. V. C.
,
2007
, “
The Role of Collagen Cross-Links in Biomechanical Behavior of Human Aortic Heart Valve Leaflets: Relevance for Tissue Engineering
,”
Tissue Eng.
,
13
(
7
), pp.
1501
1511
.
12.
Rock
,
C. A.
,
Han
,
L.
, and
Doehring
,
T. C.
,
2014
, “
Complex Collagen Fiber and Membrane Morphologies of the Whole Porcine Aortic Valve
,”
PLoS One
,
9
(
1
), p.
e86087
.
13.
Sacks
,
M. S.
,
David Merryman
,
W.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.
14.
Vesely
,
I.
,
1998
, “
The Role of Elastin in Aortic Valve Mechanics
,”
J. Biomech.
,
31
(
2
), pp.
115
123
.
15.
Mavrilas
,
D.
, and
Missirlis
,
Y.
,
1991
, “
An Approach to the Optimization of Preparation of Bioprosthetic Heart Valves
,”
J. Biomech.
,
24
(
5
), pp.
331
339
.
16.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.
17.
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
,
1999
, “
Influence of Anisotropy on the Mechanical Behaviour of Bioprosthetic Heart Valves
,”
J. Med. Eng. Technol.
,
23
(
6
), pp.
203
215
.
18.
Loerakker
,
S.
,
Argento
,
G.
,
Oomens
,
C. W. J.
, and
Baaijens
,
F. P. T.
,
2013
, “
Effects of Valve Geometry and Tissue Anisotropy on the Radial Stretch and Coaptation Area of Tissue-Engineered Heart Valves
,”
J. Biomech.
,
46
(
11
), pp.
1792
1800
.
19.
Saleeb
,
A. F.
,
Kumar
,
A.
, and
Thomas
,
V. S.
,
2013
, “
The Important Roles of Tissue Anisotropy and Tissue-to-Tissue Contact on the Dynamical Behavior of a Symmetric Tri-Leaflet Valve During Multiple Cardiac Pressure Cycles
,”
Med. Eng. Phys.
,
35
(
1
), pp.
23
35
.
20.
Stella
,
J. A.
, and
Sacks
,
M. S.
,
2007
, “
On the Biaxial Mechanical Properties of the Layers of the Aortic Valve Leaflet
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
757
766
.
21.
Cacciola
,
G.
,
Peters
,
G. W. M.
, and
Baaijens
,
F. P. T.
,
2000
, “
A Synthetic Fiber-Reinforced Stentless Heart Valve
,”
J. Biomech.
,
33
(
6
), pp.
653
658
.
22.
De Hart
,
J.
,
Cacciola
,
G.
,
Schreurs
,
P. J. G.
, and
Peters
,
G. W. M.
,
1998
, “
A Three-Dimensional Analysis of a Fibre-Reinforced Aortic Valve Prosthesis
,”
J. Biomech.
,
31
(
7
), pp.
629
638
.
23.
Liu
,
Y.
,
Kasyanov
,
V.
, and
Schoephoerster
,
R. T.
,
2007
, “
Effect of Fiber Orientation on the Stress Distribution Within a Leaflet of a Polymer Composite Heart Valve in the Closed Position
,”
J. Biomech.
,
40
(
5
), pp.
1099
1106
.
24.
Puskas
,
J. E.
, and
Chen
,
Y.
,
2004
, “
Biomedical Application of Commercial Polymers and Novel Polyisobutylene-Based Thermoplastic Elastomers for Soft Tissue Replacement
,”
Biomacromolecules
,
5
(
4
), pp.
1141
1154
.
25.
Pinchuk
,
L.
,
Wilson
,
G. J.
,
Barry
,
J. J.
,
Schoephoerster
,
R. T.
,
Parel
,
J.-M.
, and
Kennedy
,
J. P.
,
2008
, “
Medical Applications of Poly(Styrene-Block-Isobutylene-Block-Styrene) (“SIBS”)
,”
Biomaterials
,
29
(
4
), pp.
448
460
.
26.
Ranade
,
S. V.
,
Richard
,
R. E.
, and
Helmus
,
M. N.
,
2005
, “
Styrenic Block Copolymers for Biomaterial and Drug Delivery Applications
,”
Acta Biomater.
,
1
(
1
), pp.
137
144
.
27.
Brubert
,
J.
,
Krajewski
,
S.
,
Wendel
,
H. P.
,
Nair
,
S.
,
Stasiak
,
J.
, and
Moggridge
,
G. D.
,
2016
, “
Hemocompatibility of Styrenic Block Copolymers for Use in Prosthetic Heart Valves
,”
J. Mater. Sci. Mater. Med.
,
27
(
2
), pp.
1
12
.
28.
Claiborne
,
T. E.
,
Girdhar
,
G.
,
Gallocher-Lowe
,
S.
,
Sheriff
,
J.
,
Kato
,
Y. P.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2011
, “
Thrombogenic Potential of Innovia Polymer Valves Versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves
,”
ASAIO J.
,
57
(
1
), pp.
26
31
.
29.
El Fray
,
M.
,
Prowans
,
P.
,
Puskas
,
J. E.
, and
Altstädt
,
V.
,
2006
, “
Biocompatibility and Fatigue Properties of Polystyrene-Polyisobutylene-Polystyrene: An Emerging Thermoplastic Elastomeric Biomaterial
,”
Biomacromolecules
,
7
(
3
), pp.
844
850
.
30.
Gallocher
,
S. L.
,
Aguirre
,
A. F.
,
Kasyanov
,
V.
,
Pinchuk
,
L.
, and
Schoephoerster
,
R. T.
,
2006
, “
A Novel Polymer for Potential Use in a Trileaflet Heart Valve
,”
J. Biomed. Mater. Res. Part B
,
79B
(
2
), pp.
325
334
.
31.
Stasiak
,
J.
,
Brubert
,
J.
,
Serrani
,
M.
,
Nair
,
S.
,
de Gaetano
,
F.
,
Costantino
,
M. L.
, and
Moggridge
,
G. D.
,
2014
, “
A Bio-Inspired Microstructure Induced by Slow Injection Moulding of Cylindrical Block Copolymers
,”
Soft Matter
,
10
(
32
), pp.
6077
6086
.
32.
Stasiak
,
J.
,
Brubert
,
J.
,
Serrani
,
M.
,
Talhat
,
A.
,
De Gaetano
,
F.
,
Costantino
,
M. L.
, and
Moggridge
,
G. D.
,
2015
, “
Structural Changes of Block Copolymers With Bi-Modal Orientation Under Fast Cyclical Stretching as Observed by Synchrotron SAXS
,”
Soft Matter
,
11
(
16
), pp.
3271
3278
.
33.
Zaffora
,
A.
,
2011
, “
Computational Method for the Design of Innovative Materials for Heart Valve Prostheses
,” Ph.D. thesis, Politecnico di Milano, Milan, Italy.
34.
De Gaetano
,
F.
,
Bagnoli
,
P.
,
Zaffora
,
A.
,
Pandolfi
,
A.
,
Serrani
,
M.
,
Brubert
,
J.
,
Stasiak
,
J.
,
Moggridge
,
G. D.
, and
Costantino
,
M. L.
,
2015
, “
A Newly Developed Tri-Leaflet Polymeric Heart Valve Prosthesis
,”
J. Mech. Med. Biol.
,
15
(02), p.
1540009
.
35.
De Gaetano
,
F.
,
Serrani
,
M.
,
Bagnoli
,
P.
,
Brubert
,
J.
,
Stasiak
,
J.
,
Moggridge
,
G. D.
, and
Costantino
,
M. L.
,
2015
, “
Fluid Dynamic Performances of a New Polymeric Heart Valve Prototype (Poli-Valve) Tested Under Continuous and Pulsatile Flow Conditions
,”
Int. J. Artif. Organs
,
38
(
11
), pp.
600
606
.
36.
Labrosse
,
M. R.
,
Beller
,
C. J.
,
Robicsek
,
F.
, and
Thubrikar
,
M. J.
,
2006
, “
Geometric Modeling of Functional Trileaflet Aortic Valves: Development and Clinical Applications
,”
J. Biomech.
,
39
(
14
), pp.
2665
2672
.
37.
Swanson
,
W. M.
, and
Clark
,
R. E.
,
1974
, “
Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure
,”
Circ. Res.
,
35
(
6
), pp.
871
882
.
38.
Thubrikar
,
M.
,
1990
,
The Aortic Valve
,
CRC Press
,
Boca Raton, FL
.
39.
Pakula
,
T.
,
Saijo
,
K.
,
Kawai
,
H.
, and
Hashimoto
,
T.
,
1985
, “
Deformation Behavior of Styrene-Butadiene-Styrene Triblock Copolymer With Cylindrical Morphology
,”
Macromolecules
,
18
(
6
), pp.
1294
1302
.
40.
Stasiak
,
J.
,
Squires
,
A. M.
,
Castelletto
,
V.
,
Hamley
,
I. W.
, and
Moggridge
,
G. D.
,
2009
, “
Effect of Stretching on the Structure of Cylinder- and Sphere-Forming Styrene-Isoprene-Styrene Block Copolymers
,”
Macromolecules
,
42
(
14
), pp.
5256
5265
.
41.
Perotti
,
L. E.
,
Deiterding
,
R.
,
Inaba
,
K.
,
Shepherd
,
J.
, and
Ortiz
,
M.
,
2013
, “
Elastic Response of Water-Filled Fiber Composite Tubes Under Shock Wave Loading
,”
Int. J. Solids Struct.
,
50
(
3–4
), pp.
473
486
.
42.
Holzapfel
,
G. A.
,
2000
, “
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,”
Wiley
,
Hoboken, NJ
.
43.
Stasiak
,
J.
,
Moggridge
,
G. D.
,
Zaffora
,
A.
,
Pandolfi
,
A.
, and
Costantino
,
M. L.
,
2010
, “
Engineering Orientation in Block Copolymers for Application to Prosthetic Heart Valves
,”
Funct. Mater. Lett.
,
3
(
4
), pp.
249
252
.
44.
Haj-Ali
,
R.
,
Dasi
,
L. P.
,
Kim
,
H.-S.
,
Choi
,
J.
,
Leo
,
H. W.
, and
Yoganathan
,
A. P.
,
2008
, “
Structural Simulations of Prosthetic Tri-Leaflet Aortic Heart Valves
,”
J. Biomech.
,
41
(
7
), pp.
1510
1519
.
45.
Luo
,
X. Y.
,
Li
,
W. G.
, and
Li
,
J.
,
2003
, “
Geometrical Stress-Reducing Factors in the Anisotropic Porcine Heart Valves
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
735
744
.
46.
Sun
,
W.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.
47.
Boerboom
,
R.
,
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
,
2003
, “
Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve
,”
Ann. Biomed. Eng.
,
31
(
9
), pp.
1040
1053
.
48.
Driessen
,
N.
,
Boerboom
,
R.
,
Huyghe
,
J. M.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2003
, “
Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
549
557
.
49.
Li
,
J.
,
Luo
,
X. Y.
, and
Kuang
,
Z. B.
,
2001
, “
A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves
,”
J. Biomech.
,
34
(
10
), pp.
1279
1289
.
50.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp—Part II: A Structural Constitutive
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
51.
Martin
,
C.
, and
Sun
,
W.
,
2012
, “
Biomechanical Characterization of Aortic Valve Tissue in Humans and Common Animal Models
,”
J. Biomed. Mater. Res. Part A
,
100A
(
6
), pp.
1591
1599
.
52.
Zarrin-Ghalami
,
T.
, and
Fatemi
,
A.
,
2012
, “
Material Deformation and Fatigue Behavior Characterization for Elastomeric Component Life Predictions
,”
Polym. Eng. Sci.
,
52
(
8
), pp.
1795
1805
.
53.
Zarrin-Ghalami
,
T.
, and
Fatemi
,
A.
,
2013
, “
Multiaxial Fatigue and Life Prediction of Elastomeric Components
,”
Int. J. Fatigue
,
55
, pp.
92
101
.
You do not currently have access to this content.