Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1–100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1±20.4 kPa and 5.5±2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.

References

1.
Goldberg
,
M.
, and
Smith
,
A. J.
,
2004
, “
Cells and Extracellular Matrices of Dentin and Pulp: A Biological Basis for Repair and Tissue Engineering
,”
Crit. Rev. Oral Biol. Med.
,
15
(
1
), pp.
13
27
.
2.
Shen
,
Z. L.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2011
, “
Viscoelastic Properties of Isolated Collagen Fibrils
,”
Biophys. J.
,
100
(
12
), pp.
3008
3015
.
3.
Gelse
,
K.
,
Poschl
,
E.
, and
Aigner
,
T.
,
2003
, “
Collagens—Structure, Function, and Biosynthesis
,”
Adv. Drug Delivery Rev.
,
55
(
12
), pp.
1531
1546
.
4.
Yuan
,
Z.
,
Nie
,
H.
,
Wang
,
S.
,
Lee
,
C. H.
,
Li
,
A.
,
Fu
,
S. Y.
,
Zhou
,
H.
,
Chen
,
L.
, and
Mao
,
J. J.
,
2011
, “
Biomaterial Selection for Tooth Regeneration
,”
Tissue Eng., Part B
,
17
(
5
), pp.
373
388
.
5.
Mintz
,
B. R.
, and
Cooper
,
J. A.
, Jr.
,
2014
, “
Hybrid Hyaluronic Acid Hydrogel/Poly(Varepsilon-Caprolactone) Scaffold Provides Mechanically Favorable Platform for Cartilage Tissue Engineering Studies
,”
J. Biomed. Mater. Res., Part A
,
102
(
9
), pp.
2918
2926
.
6.
Cameron
,
A. R.
,
Frith
,
J. E.
,
Gomez
,
G. A.
,
Yap
,
A. S.
, and
Cooper-White
,
J. J.
,
2014
, “
The Effect of Time-Dependent Deformation of Viscoelastic Hydrogels on Myogenic Induction and Rac1 Activity in Mesenchymal Stem Cells
,”
Biomaterials
,
35
(
6
), pp.
1857
1868
.
7.
Erisken
,
C.
,
Kalyon
,
D. M.
, and
Wang
,
H.
,
2010
, “
Viscoelastic and Biomechanical Properties of Osteochondral Tissue Constructs Generated From Graded Polycaprolactone and Beta-Tricalcium Phosphate Composites
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091013
.
8.
Erisken
,
C.
,
Kalyon
,
D. M.
,
Zhou
,
J.
,
Kim
,
S. G.
, and
Mao
,
J. J.
,
2015
, “
Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration
,”
J. Endod.
,
41
(
10
), pp.
1711
1717
.
9.
Hargreaves
,
K. M.
,
Giesler
,
T.
,
Henry
,
M.
, and
Wang
,
Y.
,
2008
, “
Regeneration Potential of the Young Permanent Tooth: What Does the Future Hold?
,”
J. Endod.
,
34
(
7 Suppl.
), pp.
51
56
.
10.
Murray
,
P. E.
,
Garcia-Godoy
,
F.
, and
Hargreaves
,
K. M.
,
2007
, “
Regenerative Endodontics: A Review of Current Status and a Call for Action
,”
J. Endod.
,
33
(
4
), pp.
377
390
.
11.
Sloan
,
A. J.
, and
Smith
,
A. J.
,
2007
, “
Stem Cells and the Dental Pulp: Potential Roles in Dentine Regeneration and Repair
,”
Oral Dis.
,
13
(
2
), pp.
151
157
.
12.
Aktas
,
S.
,
Kalyon
,
D. M.
,
Marin-Santibanez
,
B. M.
, and
Perez-Gonzalez
,
J.
,
2014
, “
Shear Viscosity and Wall Slip Behavior of a Viscoplastic Hydrogel
,”
J. Rheol.
,
58
(
2
), pp.
513
535
.
13.
Chambon
,
F.
, and
Winter
,
H. H.
,
1987
, “
Linear Viscoelasticity at the Gel Point of a Cross-Linking PDMS With Imbalanced Stoichiometry
,”
J. Rheol.
,
31
(
8
), pp.
683
697
.
14.
Degirmenbasi
,
N.
,
Kalyon
,
D. M.
, and
Birinci
,
E.
,
2006
, “
Biocomposites of Nanohydroxyapatite With Collagen and Poly(Vinyl Alcohol)
,”
Colloids Surf., B
,
48
(
1
), pp.
42
49
.
15.
Hayes
,
W. C.
, and
Bodine
,
A. J.
,
1978
, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
(
8–9
), pp.
407
419
.
16.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.
17.
Spirt
,
A. A.
,
Mak
,
A. F.
, and
Wassell
,
R. P.
,
1989
, “
Nonlinear Viscoelastic Properties of Articular Cartilage in Shear
,”
J. Orthop. Res.
,
7
(
1
), pp.
43
49
.
18.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
(
6
), pp.
771
781
.
19.
de Aro
,
A. A.
,
Vidal
,
B. D.
, and
Pimentel
,
E. R.
,
2012
, “
Biochemical and Anisotropical Properties of Tendons
,”
Micron
,
43
(
2–3
), pp.
205
214
.
20.
Couppe
,
C.
,
Hansen
,
P.
,
Kongsgaard
,
M.
,
Kovanen
,
V.
,
Suetta
,
C.
,
Aagaard
,
P.
,
Kjaer
,
M.
, and
Magnusson
,
S. P.
,
2009
, “
Mechanical Properties and Collagen Cross-Linking of the Patellar Tendon in Old and Young Men
,”
J. Appl. Physiol.
,
107
(
3
), pp.
880
886
.
21.
Haus
,
J. M.
,
Carrithers
,
J. A.
,
Trappe
,
S. W.
, and
Trappe
,
T. A.
,
2007
, “
Collagen, Cross-Linking, and Advanced Glycation End Products in Aging Human Skeletal Muscle
,”
J. Appl. Physiol.
,
103
(
6
), pp.
2068
2076
.
You do not currently have access to this content.