Mathematical models of the human spine can be used to investigate spinal biomechanics without the difficulties, limitations, and ethical concerns associated with physical experimentation. Validation of such models is necessary to ensure that the modeled system behavior accurately represents the physics of the actual system. The goal of this work was to validate a medical image-based nonlinear lumbosacral spine finite element model of a healthy 20-yr-old female subject under physiological moments. Range of motion (ROM), facet joint forces (FJF), and intradiscal pressure (IDP) were compared with experimental values and validated finite element models from the literature. The finite element model presented in this work was in good agreement with published experimental studies and finite element models under pure moments. For applied moments of 7.5 N·m, the ROM in flexion–extension, axial rotation, and lateral bending were 39 deg, 16 deg, and 28 deg, respectively. Excellent agreement was observed between the finite element model and experimental data for IDP under pure compressive loading. The predicted FJFs were lower than those of the experimental results and validated finite element models for extension and torsion, likely due to the nondegenerate properties chosen for the intervertebral disks and morphology of the young female spine. This work is the first to validate a computational lumbar spine model of a young female subject. This model will serve as a valuable tool for predicting orthopedic spinal injuries, studying the effect of intervertebral disk replacements using advanced biomaterials, and investigating soft tissue degeneration.

References

1.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
Kiapour
,
A.
,
Kim
,
Y. H.
,
Labus
,
K. M.
,
Little
,
J. P.
,
Park
,
W. M.
,
Wang
,
Y. H.
,
Wilke
,
H. J.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.
2.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.
3.
Lipscomb
,
K. E.
,
Sarigul-Klijn
,
N.
,
Klineberg
,
E.
, and
Mohan
,
V.
,
2017
, “
Biomechanical Effects of Human Lumbar Discography: In Vitro Experiments and Their Finite Element Validation
,”
J. Clin. Spine Surg.
,
30
(
3
), pp.
E219
E225
.
4.
Schmidt
,
H.
,
Galbusera
,
F.
,
Rohlmann
,
A.
,
Zander
,
T.
, and
Wilke
,
H.-J.
,
2012
, “
Effect of Multilevel Lumbar Disc Arthroplasty on Spine Kinematics and Facet Joint Loads in Flexion and Extension: A Finite Element Analysis
,”
Eur. Spine J.
,
21
(
S5
), pp.
663
674
.
5.
Lin
,
H.-M.
,
Pan
,
Y.-N.
,
Liu
,
C.-L.
,
Huang
,
L.-Y.
,
Huang
,
C.-H.
, and
Chen
,
C.-S.
,
2013
, “
Biomechanical Comparison of the K-ROD and Dynesys Dynamic Spinal Fixator Systems—A Finite Element Analysis
,”
Bio-Med. Mater. Eng.
,
23
(
6
), p.
495
.
6.
Jones
,
A. C.
, and
Wilcox
,
R. K.
,
2008
, “
Finite Element Analysis of the Spine: Towards a Framework of Verification, Validation and Sensitivity Analysis
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1287
1304
.
7.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Fröhlich
,
M.
,
2004
, “
Multi-Segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus
,”
Comput. Mech.
,
34
(
2
), pp. 147–163.
8.
Breau
,
C.
,
Shirazi-Adl
,
A.
, and
Guise
,
J.
,
1991
, “
Reconstruction of a Human Ligamentous Lumbar Spine Using CT Images—A Three-Dimensional Finite Element Mesh Generation
,”
Ann. Biomed. Eng.
,
19
(
3
), pp.
291
302
.
9.
Shirazi-Adl
,
A.
,
1994
, “
Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion—Mechanics of Facet Articulation
,”
J. Biomech.
,
27
(
3
), p.
289293
.
10.
Shirazi-Adl
,
A.
,
1994
, “
Biomechanics of the Lumbar Spine in Sagittal/Lateral Moments
,”
Spine
,
19
(
21
), pp.
2407
2414
.
11.
Kong
,
W. Z.
,
Goel
,
V. K.
, and
Gilbertson
,
L. G.
,
1998
, “
Prediction of Biomechanical Parameters in the Lumbar Spine During Static Sagittal Plane Lifting
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
273
280
.
12.
Chen
,
C.-S.
,
Cheng
,
C.-K.
,
Liu
,
C.-L.
, and
Lo
,
W.-H.
,
2001
, “
Stress Analysis of the Disc Adjacent to Interbody Fusion in Lumbar Spine
,”
Med. Eng. Phys.
,
23
(
7
), pp.
485
493
.
13.
Chen
,
C.-S.
,
Cheng
,
C.-K.
, and
Liu
,
C.-L.
,
2002
, “
A Biomechanical Comparison of Posterolateral Fusion and Posterior Fusion in the Lumbar Spine
,”
J. Spinal Disord. Tech.
,
15
(
1
), pp.
53
63
.
14.
Zander
,
T.
,
Rohlmann
,
A.
,
Calisse
,
J.
, and
Bergmann
,
G.
,
2001
, “
Estimation of Muscle Forces in the Lumbar Spine During Upper-Body Inclination
,”
Clin. Biomech.
,
16
, pp.
S73
S80
.
15.
Zander
,
T.
,
Rohlmann
,
A.
,
Klöckner
,
C.
, and
Bergmann
,
G.
,
2002
, “
Comparison of the Mechanical Behavior of the Lumbar Spine Following Mono- and Bisegmental Stabilization
,”
Clin. Biomech.
,
17
(
6
), pp.
439
445
.
16.
Little
,
J. P.
,
De Visser
,
H.
,
Pearcy
,
M. J.
, and
Adam
,
C. J.
,
2008
, “
Are Coupled Rotations in the Lumbar Spine Largely Due to the Osseo-Ligamentous Anatomy?—A Modeling Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
1
), pp.
95
103
.
17.
Zander
,
T.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
Influence of Different Artificial Disc Kinematics on Spine Biomechanics
,”
Clin. Biomech.
,
24
(
2
), pp.
135
142
.
18.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
,
2011
, “
Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
8
), pp.
695
705
.
19.
Liu
,
C.-L.
,
Zhong
,
Z.-C.
,
Hsu
,
H.-W.
,
Shih
,
S.-L.
,
Wang
,
S.-T.
,
Hung
,
C.
, and
Chen
,
C.-S.
,
2011
, “
Effect of the Cord Pretension of the Dynesys Dynamic Stabilisation System on the Biomechanics of the Lumbar Spine: A Finite Element Analysis
,”
Eur. Spine J.
,
20
(
11
), pp.
1850
1858
.
20.
Kiapour
,
W. A.
,
Ambati
,
K. D.
,
Hoy
,
K. R.
, and
Goel
,
K. V.
,
2012
, “
Effect of Graded Facetectomy on Biomechanics of Dynesys Dynamic Stabilization System
,”
Spine
,
37
(
10
), pp.
E581
E589
.
21.
Park
,
W. M.
,
Kim
,
K.
, and
Kim
,
Y. H.
,
2013
, “
Effects of Degenerated Intervertebral Discs on Intersegmental Rotations, Intradiscal Pressures, and Facet Joint Forces of the Whole Lumbar Spine
,”
Comput. Biol. Med.
,
43
(
9
), pp.
1234
1240
.
22.
Xu
,
M.
,
Yang
,
J.
,
Lieberman
,
I. H.
, and
Haddas
,
R.
,
2017
, “
Lumbar Spine Finite Element Model for Healthy Subjects: Development and Validation
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
1
), pp.
1
15
.
23.
Ackerman, M. J., 1998, “
The Visible Human Project
,”
Proc. IEEE
,
86
(3), pp. 504–511.
24.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
4
), pp.
337
344
.
25.
Ayturk
,
U. M.
,
2007
, “
Development and Validation of a Three Dimensional High Resolution Nonlinear Finite Element Model of an L3/L4 Functional Spinal Unit
,” Master's thesis, Colorado State University, Fort Collins, CO.
26.
van der Houwen
,
E. B.
,
Baron
,
P.
,
Veldhuizen
,
A. G.
,
Burgerhof
,
J. G.
,
van Ooijen
,
P. M.
, and
Verkerke
,
G. J.
,
2010
, “
Geometry of the Intervertebral Volume and Vertebral Endplates of the Human Spine
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
33
40
.
27.
Tang
,
R.
,
Gungor
,
C.
,
Sesek
,
R. F.
,
Foreman
,
K. B.
,
Gallagher
,
S.
, and
Davis
,
G. A.
,
2016
, “
Morphometry of the Lower Lumbar Intervertebral Discs and Endplates: Comparative Analyses of New MRI Data With Previous Findings
,”
Eur. Spine J.
,
25
(
12
), pp.
4116
4131
.
28.
Zhou
,
S. H.
,
McCarthy
,
I. D.
,
McGregor
,
A. H.
,
Coombs
,
R. R. H.
, and
Hughes
,
S. P. F.
,
2000
, “
Geometrical Dimensions of the Lower Lumbar Vertebrae—Analysis of Data From Digitised CT Images
,”
Eur. Spine J.
,
9
(
3
), pp.
242
248
.
29.
Bailey
,
J. F.
,
Sparrey
,
C. J.
,
Been
,
E.
, and
Kramer
,
P. A.
,
2016
, “
Morphological and Postural Sexual Dimorphism of the Lumbar Spine Facilitates Greater Lordosis in Females
,”
J. Anat.
,
229
(
1
), pp.
82
91
.
30.
Zander
,
T.
,
Dreischarf
,
M.
,
Timm
,
A.-K.
,
Baumann
,
W. W.
, and
Schmidt
,
H.
,
2017
, “
Impact of Material and Morphological Parameters on the Mechanical Response of the Lumbar Spine—A Finite Element Sensitivity Study
,”
J. Biomech.
,
53
, pp.
185
190
.
31.
Lipscomb
,
K. E.
,
2014
, “
Biomechanical Changes in the Whole Human Spine Due to Intervertebral Disc Degeneration and Fusion
,” University of California, Davis, CA.
32.
Lipscomb
,
K.
,
Sarigul-Klijn
,
N.
, and
Klineberg
,
E. O.
,
2016
, “
Characterization of Lumbar-Level Spinal Fusion on the Whole Human Spine Under Vibrations
,”
ASME
Paper No. IMECE2016-66384.
33.
Townsend
,
M. T.
, and
Sarigul-Klijn
,
N.
,
2018
, “
Human Spaceflight and Space Adaptations: Computational Simulation of Gravitational Unloading on the Spine
,”
Acta Astronaut.
,
145
, pp.
18
27
.
34.
Townsend
,
M. T.
, and
Sarigul-Klijn
,
N.
,
2016
, “
Updated Lagrangian Finite Element Formulations of Various Biological Soft Tissue Non-Linear Material Models: A Comprehensive Procedure and Review
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
11
), pp.
1137
1142
.
35.
Lipscomb
,
K. E.
, and
Sarigul-Klijn
,
N.
, “
Simulation of the Whole Human Spine Using Finite Elements: P & H Version Convergence
,”
ASME
Paper No. SBC2013-14298.
36.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
37.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
4
), p.
377
.
38.
Guo
,
L.-X.
, and
Teo
,
E.-C.
,
2006
, “
Influence Prediction of Injury and Vibration on Adjacent Components of Spine Using Finite Element Methods
,”
J. Spin. Disord. Tech.
,
19
(
2
), pp.
118
124
.
39.
Lu
,
M. Y.
,
Hutton
,
C. W.
, and
Gharpuray
,
M. V.
,
1996
, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
,
21
(
22
), pp.
2570
2579
.
40.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.
41.
Shirazi-Adl
,
M. A.
,
Ahmed
,
C. A.
, and
Shrivastava
,
C. S.
,
1986
, “
Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression
,”
Spine
,
11
(
9
), pp.
914
927
.
42.
Thomas Edwards
,
A. W.
,
Zheng
,
A. Y.
,
Ferrara
,
A. L.
, and
Yuan
,
A. H.
,
2001
, “
Structural Features and Thickness of the Vertebral Cortex in the Thoracolumbar Spine
,”
Spine
,
26
(
2
), pp.
218
225
.
43.
Woldtvedt
,
D. J.
,
Womack
,
W.
,
Gadomski
,
B. C.
,
Schuldt
,
D.
, and
Puttlitz
,
C. M.
,
2011
, “
Finite Element Lumbar Spine Facet Contact Parameter Predictions Are Affected by the Cartilage Thickness Distribution and Initial Joint Gap Size
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
061009
.
44.
Dassault Systèmes Simulia Corp.,
2014
, “
Contact Formulations and Numerical Methods
,” Abaqus Analysis User's Guide (6.14),
Dassault Systèmes Simulia Corp
,
Providence, RI
.
45.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, NY
.
46.
Spencer
,
A. J. M.
,
1972
,
Deformations of Fibre-Reinforced Materials
,
Clarendon Press
,
Oxford, UK
.
47.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
48.
Dreischarf
,
M.
,
Zander
,
T.
,
Bergmann
,
G.
, and
Rohlmann
,
A.
,
2010
, “
A Non-Optimized Follower Load Path May Cause Considerable Intervertebral Rotations
,”
J. Biomech.
,
43
(
13
), pp.
2625
2628
.
49.
Korez
,
R.
,
Likar
,
B.
,
Pernus
,
F.
, and
Vrtovec
,
T.
,
2014
, “
Parametric Modeling of the Intervertebral Disc Space in 3D: Application to CT Images of the Lumbar Spine
,”
Comput. Med. Imaging Graph
,
38
(
7
), pp.
596
605
.
50.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.
51.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Rawlins
,
D. S.
, and
Weiss
,
J. A.
,
2016
, “
Finite Element Simulation of Articular Contact Mechanics With Quadratic Tetrahedral Elements
,”
J. Biomech.
,
49
(
5
), pp.
659
667
.
52.
Rohlmann
,
A.
,
Neller
,
S.
,
Claes
,
L.
,
Bergmann
,
G.
, and
Wilke
,
H.-J.
,
2001
, “
Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine
,”
Spine
,
26
(
24
), pp.
E557
E561
.
53.
White
,
A. A. P.
, and
Manohar
,
M.
,
1978
,
Clinical Biomechanics of the Spine
,
Lippincott
,
Philadelphia, PA
.
54.
Panjabi
,
M. M.
,
Oxland
,
R. T.
,
Yamamoto
,
J. I.
, and
Crisco
,
J. J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg.
,
76
(
3
), pp.
413
424
.
55.
Brinckmann
,
P.
, and
Grootenboer
,
H.
,
1991
, “
Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy an In Vivo Investigation on Human Lumbar Discs
,”
Spine
,
16
(
6
), pp.
641
646
.
56.
Shan
,
Z.
,
Li
,
S.
,
Liu
,
J.
,
Mamuti
,
M.
,
Wang
,
C.
, and
Zhao
,
F.
,
2015
, “
Correlation Between Biomechanical Properties of the Annulus Fibrosus and Magnetic Resonance Imaging (MRI) Findings
,”
Eur. Spine J.
,
24
(
9
), pp.
1909
1916
.
57.
O'Connell
,
G.
,
Sen
,
S.
, and
Elliott
,
D.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Mech. Model. Mechanobiol.
,
11
(
3
), pp.
493
503
.
58.
Skrzypiec
,
A. D.
,
Tarala
,
A. M.
,
Pollintine
,
A. P.
,
Dolan
,
A. P.
, and
Adams
,
A. M.
,
2007
, “
When Are Intervertebral Discs Stronger Than Their Adjacent Vertebrae?
,”
Spine
,
32
(
22
), pp.
2455
2461
.
59.
Wilson
,
D. C.
,
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Oxland
,
T. R.
, and
Wilson
,
D. R.
,
2006
, “
Accuracy and Repeatability of a New Method for Measuring Facet Loads in the Lumbar Spine
,”
J. Biomech.
,
39
(
2
), p.
348
.
60.
Bachrach
,
N. M.
,
Mow
,
V. C.
, and
Guilak
,
F.
,
1998
, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
,
31
(
5
), pp.
445
451
.
61.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.https://www.tandfonline.com/doi/abs/10.1080/10255840108908005
You do not currently have access to this content.