Vascular smooth muscle cells (VSMCs) can regulate arterial mechanics via contractile activity in response to changing mechanical and chemical signals. Contractility is traditionally evaluated via uniaxial isometric testing of isolated rings despite the in vivo environment being very different. Most blood vessels maintain a locally preferred value of in vivo axial stretch while subjected to changes in distending pressure, but both of these phenomena are obscured in uniaxial isometric testing. Few studies have rigorously analyzed the role of in vivo loading conditions in smooth muscle function. Thus, we evaluated effects of uniaxial versus biaxial deformations on smooth muscle contractility by stimulating two regions of the mouse aorta with different vasoconstrictors using one of three testing protocols: (i) uniaxial isometric testing, (ii) biaxial isometric testing, and (iii) axially isometric plus isobaric testing. Comparison of methods (i) and (ii) revealed increased sensitivity and contractile capacity to potassium chloride and phenylephrine (PE) with biaxial isometric testing, and comparison of methods (ii) and (iii) revealed a further increase in contractile capacity with isometric plus isobaric testing. Importantly, regional differences in estimated in vivo axial stretch suggest locally distinct optimal biaxial configurations for achieving maximal smooth muscle contraction, which can only be revealed with biaxial testing. Such differences highlight the importance of considering in vivo loading and geometric configurations when evaluating smooth muscle function. Given the physiologic relevance of axial extension and luminal pressurization, we submit that, when possible, axially isometric plus isobaric testing should be employed to evaluate vascular smooth muscle contractile function.

References

1.
Furchgott
,
R. F.
, and
Zawadzki
,
J. V.
,
1980
, “
The Obligatory Role of Endothelial Cells in the Relaxation of Arterial Smooth Muscle by Acetylcholine
,”
Nature
,
288
(
5789
), pp.
373
376
.
2.
Dharmashankar
,
K.
, and
Widlansky
,
M. E.
,
2010
, “
Vascular Endothelial Function and Hypertension: Insights and Directions
,”
Curr. Hypertens. Rep.
,
12
(
6
), pp.
448
455
.
3.
Ferruzzi
,
J.
,
Murtada
,
S.-I.
,
Li
,
G.
,
Jiao
,
Y.
,
Uman
,
S.
,
Ting
,
M. Y. L.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2016
, “
Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted Transforming Growth Factor-β Signaling Despite Compromised Extracellular Matrix Properties
,”
Arterioscler., Thromb., Vasc. Biol.
,
36
(
5
), pp.
919
927
.
4.
Guo
,
D.-C.
,
Pannu
,
H.
,
Tran-Fadulu
,
V.
,
Papke
,
C. L.
,
Yu
,
R. K.
,
Avidan
,
N.
,
Bourgeois
,
S.
,
Estrera
,
A. L.
,
Safi
,
H. J.
,
Sparks
,
E.
,
Amor
,
D.
,
Ades
,
L.
,
McConnell
,
V.
,
Willoughby
,
C. E.
,
Abuelo
,
D.
,
Willing
,
M.
,
Lewis
,
R. A.
,
Kim
,
D. H.
,
Scherer
,
S.
,
Tung
,
P. P.
,
Ahn
,
C.
,
Buja
,
L. M.
,
Raman
,
C. S.
,
Shete
,
S. S.
, and
Milewicz
,
D. M.
,
2007
, “
Mutations in Smooth Muscle α-Actin (ACTA2) Lead to Thoracic Aortic Aneurysms and Dissections
,”
Nat. Genet.
,
39
(
12
), pp.
1488
1493
.
5.
Milewicz
,
D. M.
,
Guo
,
D.-C.
,
Tran-Fadulu
,
V.
,
Lafont
,
A. L.
,
Papke
,
C. L.
,
Inamoto
,
S.
,
Kwartler
,
C. S.
, and
Pannu
,
H.
,
2008
, “
Genetic Basis of Thoracic Aortic Aneurysms and Dissections: Focus on Smooth Muscle Cell Contractile Dysfunction
,”
Annu. Rev. Genomics Hum. Genet.
,
9
(
1
), pp.
283
302
.
6.
Speden
,
R. N.
,
1960
, “
The Effect of Initial Strip Length on the Noradrenaline-Induced Contraction of Arterial Strips
,”
J. Physiol.
,
154
(
1
), pp.
15
25
.
7.
Cox
,
R. H.
,
1983
, “
Comparison of Arterial Wall Mechanics Using Ring and Cylindrical Segments
,”
Am. J. Physiol.
,
244
(
2
), pp.
H298
H303
.
8.
Murtada
,
S.-I.
,
Ferruzzi
,
J.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2016
, “
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051008
.
9.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2005
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.
10.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
11.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.
12.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
13.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
14.
Price
,
J. M.
,
Davis
,
D. L.
, and
Knauss
,
E. B.
,
1981
, “
Length-Dependent Sensitivity in Vascular Smooth Muscle
,”
Am. J. Physiol.
,
241
(
4
), pp.
H557
H563
.
15.
Brozovich
,
F. V.
,
Nicholson
,
C. J.
,
Degen
,
C. V.
,
Gao
,
Y. Z.
,
Aggarwal
,
M.
, and
Morgan
,
K. G.
,
2016
, “
Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders
,”
Pharmacol. Rev.
,
68
(
2
), pp.
476
532
.
16.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2005
, “
Effects of a Sustained Extension on Arterial Growth and Remodeling: A Theoretical Study
,”
J. Biomech.
,
38
(
6
), pp.
1255
1261
.
17.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2002
, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
,
90
(
8
), pp.
918
925
.
18.
Zulliger
,
M. A.
,
Kwak
,
N. T. M. R.
,
Tsapikouni
,
T.
, and
Stergiopulos
,
N.
,
2002
, “
Effects of Longitudinal Stretch on VSM Tone and Distensibility of Muscular Conduit Arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
283
(
6
), pp.
H2599
H2605
.
19.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.
20.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051009
.
21.
Agianniotis
,
A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
,
2012
, “
Active Axial Stress in Mouse Aorta
,”
J. Biomech.
,
45
(
11
), pp.
1924
1927
.
22.
Dobrin
,
P. B.
,
1973
, “
Isometric and Isobaric Contraction of Carotid Arterial Smooth Muscle
,”
Am. J. Physiol.
,
225
(
3
), pp.
659
663
.
23.
Murtada
,
S.-I.
,
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2017
, “
Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle
,”
Biophys. J.
,
113
(
3
), pp.
714
727
.
24.
Murtada
,
S.-I.
,
Lewin
,
S.
,
Arner
,
A.
, and
Humphrey
,
J. D.
,
2015
, “
Adaptation of Active Tone in the Mouse Descending Thoracic Aorta Under Acute Changes in Loading
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
579
592
.
25.
Murtada
,
S. C.
,
Arner
,
A.
, and
Holzapfel
,
G. A.
,
2012
, “
Experiments and Mechanochemical Modeling of Smooth Muscle Contraction: Significance of Filament Overlap
,”
J. Theor. Biol.
,
297
, pp.
176
186
.
26.
Liu
,
J. C.-Y.
,
Rottler
,
J.
,
Wang
,
L.
,
Zhang
,
J.
,
Pascoe
,
C. D.
,
Lan
,
B.
,
Norris
,
B. A.
,
Herrera
,
A. M.
,
Paré
,
P. D.
, and
Seow
,
C. Y.
,
2013
, “
Myosin Filaments in Smooth Muscle Cells Do Not Have a Constant Length
,”
J. Physiol.
,
591
(23), pp.
5867
5878
.
27.
Baeyens
,
N.
,
Nicoli
,
S.
,
Coon
,
B. G.
,
Ross
,
T. D.
,
den Dries
,
K. V.
,
Han
,
J.
,
Lauridsen
,
H. M.
,
Mejean
,
C. O.
,
Eichmann
,
A.
,
Thomas
,
J.-L.
,
Humphrey
,
J. D.
, and
Schwartz
,
M. A.
,
2015
, “
Vascular Remodeling Is Governed by a VEGFR3-Dependent Fluid Shear Stress Set Point
,”
eLife
,
4
, p.
e04645
.
28.
Humphrey
,
J. D.
,
Schwartz
,
M. A.
,
Tellides
,
G.
, and
Milewicz
,
D. M.
,
2015
, “
Role of Mechanotransduction in Vascular Biology Focus on Thoracic Aortic Aneurysms and Dissections
,”
Circ. Res.
,
116
(
8
), pp.
1448
1461
.
29.
Asbún-Bojalil
,
J.
,
Castillo
,
E. F.
,
Escalante
,
B. A.
, and
Castillo
,
C.
,
2002
, “
Does Segmental Difference in Α1-Adrenoceptor Subtype Explain Contractile Difference in Rat Abdominal and Thoracic Aortae?
,”
Vascul. Pharmacol.
,
38
(
3
), pp.
169
175
.
30.
Kleinbongard
,
P.
,
Schleiger
,
A.
, and
Heusch
,
G.
,
2013
, “
Characterization of Vasomotor Responses in Different Vascular Territories of C57BL/6J Mice
,”
Exp. Biol. Med.
,
238
(
10
), pp.
1180
1191
.
31.
Leloup
,
A. J. A.
,
Hove
,
V. E. C.
,
Heykers
,
A.
,
Schrijvers
,
D. M.
,
Meyer
,
D. Y. G. R.
, and
Fransen
,
P.
,
2015
, “
Elastic and Muscular Arteries Differ in Structure, Basal NO Production and Voltage-Gated Ca2+-Channels
,”
Front. Physiol.
,
6
, p.
375
.
32.
Majesky
,
M. W.
,
2007
, “
Developmental Basis of Vascular Smooth Muscle Diversity
,”
Arterioscler., Thromb., Vasc. Biol.
,
27
(
6
), pp.
1248
1258
.
33.
Watson
,
S. R.
,
Liu
,
P.
,
Peña
,
E. A.
,
Sutton
,
M. A.
,
Eberth
,
J. F.
, and
Lessner
,
S. M.
,
2016
, “
Comparison of Aortic Collagen Fiber Angle Distribution in Mouse Models of Atherosclerosis Using Second-Harmonic Generation (SHG) Microscopy
,”
Microsc. Microanal.
,
22
(
01
), pp.
55
62
.
34.
Bersi
,
M. R.
,
Khosravi
,
R.
,
Wujciak
,
A. J.
,
Harrison
,
D. G.
, and
Humphrey
,
J. D.
,
2017
, “
Differential Cell-Matrix Mechanoadaptations and Inflammation Drive Regional Propensities to Aortic Fibrosis, Aneurysm or Dissection in Hypertension
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170327
.
35.
Poduri
,
A.
,
Iii
,
A. P. O.
,
Howatt
,
D. A.
,
Moorleghen
,
J. J.
,
Balakrishnan
,
A.
,
Cassis
,
L. A.
, and
Daugherty
,
A.
,
2012
, “
Regional Variation in Aortic AT1b Receptor MRNA Abundance is Associated With Contractility but Unrelated to Atherosclerosis and Aortic Aneurysms
,”
PLoS One
,
7
(
10
), p.
e48462
.
36.
Park
,
K. S.
,
Kim
,
Y.
,
Lee
,
Y.-H.
,
Earm
,
Y. E.
, and
Ho
,
W.-K.
,
2003
, “
Mechanosensitive Cation Channels in Arterial Smooth Muscle Cells Are Activated by Diacylglycerol and Inhibited by Phospholipase C Inhibitor
,”
Circ. Res.
,
93
(
6
), pp.
557
564
.
37.
Schnitzler
,
M. M. y
,
Storch
,
U.
,
Meibers
,
S.
,
Nurwakagari
,
P.
,
Breit
,
A.
,
Essin
,
K.
,
Gollasch
,
M.
, and
Gudermann
,
T.
,
2008
, “
Gq‐Coupled Receptors as Mechanosensors Mediating Myogenic Vasoconstriction
,”
EMBO J.
,
27
(
23
), pp.
3092
3103
.
38.
Orshal
,
J. M.
, and
Khalil
,
R. A.
,
2004
, “
Gender, Sex Hormones, and Vascular Tone
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
286
(
2
), pp.
R233
R249
.
39.
Stallone
,
J. N.
,
Crofton
,
J. T.
, and
Share
,
L.
,
1991
, “
Sexual Dimorphism in Vasopressin-Induced Contraction of Rat Aorta
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
260
(
2 Pt 2
), pp.
H453
H458
.
40.
Gros
,
R.
,
Van Wert
,
R.
,
You
,
X.
,
Thorin
,
E.
, and
Husain
,
M.
,
2002
, “
Effects of Age, Gender, and Blood Pressure on Myogenic Responses of Mesenteric Arteries From C57BL/6 Mice
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
282
(
1
), pp.
H380
H388
.
41.
Zahalak
,
G. I.
,
1996
, “
Non-Axial Muscle Stress and Stiffness
,”
J. Theor. Biol.
,
182
(
1
), pp.
59
84
.
You do not currently have access to this content.