In this study, coupled hemodynamic–acoustic simulations are employed to study the generation and propagation of murmurs associated with aortic stenoses where the aorta with a stenosed aortic valve is modeled as a curved pipe with a constriction near the inlet. The hemodynamics of the poststenotic flow is investigated in detail in our previous numerical study (Zhu et al., 2018, “Computational Modelling and Analysis of Haemodynamics in a Simple Model of Aortic Stenosis,” J. Fluid Mech., 851, pp. 23–49). The temporal history of the pressure on the aortic lumen is recorded during the hemodynamic study and used as the murmur source in the acoustic simulations. The thorax is modeled as an elliptic cylinder and the thoracic tissue is assumed to be homogeneous, linear and viscoelastic. A previously developed high-order numerical method that is capable of dealing with immersed bodies is applied in the acoustic simulations. To mimic the clinical practice of auscultation, the sound signals from the epidermal surface are collected. The simulations show that the source of the aortic stenosis murmur is located at the proximal end of the aortic arch and that the sound intensity pattern on the epidermal surface can predict the source location of the murmurs reasonably well. Spectral analysis of the murmur reveals the disconnect between the break frequency obtained from the flow and from the murmur signal. Finally, it is also demonstrated that the source locations can also be predicted by solving an inverse problem using the free-space Green's function. The implications of these results for cardiac auscultation are discussed.

References

1.
Hanna
,
I. R.
, and
Silverman
,
M. E.
,
2002
, “
A History of Cardiac Auscultation and Some of Its Contributors
,”
Am. J. Cardiol.
,
90
(
3
), pp.
259
267
.
2.
Lees
,
R. S.
, and
Dewey
,
C. F.
,
1970
, “
Phonoangiography: A New Noninvasive Diagnostic Method for Studying Arterial Disease
,”
Proc. Natl. Acad. Sci. U. S. A.
,
67
(
2
), pp.
935
942
.
3.
Duncan
,
G. W.
,
Gruber
,
J. O.
,
Dewey
,
C. F.
, Jr
,
Myers
,
G. S.
, and
Lees
,
R. S.
,
1975
, “
Evaluation of Carotid Stenosis by Phonoangiography
,”
N. Engl. J. Med.
,
293
(
22
), pp.
1124
1128
.
4.
Semmlow
,
J.
, and
Rahalkar
,
K.
,
2007
, “
Acoustic Detection of Coronary Artery Disease
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
449
469
.
5.
Erne
,
P.
,
2008
, “
Beyond Auscultation–Acoustic Cardiography in the Diagnosis and Assessment of Cardiac Disease
,”
Swiss Med. Wkly
,
138
(
31–32
), pp.
439
452
.
6.
Watrous
,
R. L.
,
Thompson
,
W. R.
, and
Ackerman
,
S. J.
,
2008
, “
The Impact of Computer-Assisted Auscultation on Physician Referrals of Asymptomatic Patients With Heart Murmurs
,”
Clin. Cardiol.
,
31
(
2
), pp.
79
83
.
7.
Andreou
,
A. G.
,
Abraham
,
T.
,
Thompson
,
W. R.
,
Seo
,
J. H.
, and
Mittal
,
R.
,
2015
, “
Mapping the Cardiac Acousteome: An Overview of Technologies, Tools and Methods
,”
49th Annual Conference on Information Sciences and Systems (CISS)
, Baltimore, MD, Mar. 18–20.
8.
Bakhshaee
,
H.
,
Garreau
,
G.
,
Tognetti
,
G.
,
Shoele
,
K.
,
Carrero
,
R.
,
Kilmar
,
T.
,
Zhu
,
C.
,
Thompson
,
W. R.
,
Seo
,
J. H.
,
Mittal
,
R.
, and
Andreou
,
A. G.
,
2015
, “
Mechanical Design, Instrumentation and Measurements From a Hemoacoustic Cardiac Phantom
,”
49th Annual Conference on Information Sciences and Systems
(
CISS
), Baltimore, MD, Mar. 18–20.
9.
Zhu
,
C.
,
Seo
,
J. H.
, and
Mittal
,
R.
,
2018
, “
Computational Modelling and Analysis of Haemodynamics in a Simple Model of Aortic Stenosis
,”
J. Fluid Mech.
,
851
, pp.
23
49
.
10.
Seo
,
J. H.
, and
Mittal
,
R.
,
2012
, “
A Coupled Flow-Acoustic Computational Study of Bruits From a Modeled Stenosed Artery
,”
Med. Biol. Eng. Comput.
,
50
(
10
), pp.
1025
1035
.
11.
Zhu
,
C.
,
Seo
,
J. H.
,
Bakhshaee
,
H.
, and
Mittal
,
R.
,
2017
, “
A Computational Method for Analyzing the Biomechanics of Arterial Bruits
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051008
.
12.
Tobin
,
R.
, and
Chang
,
I.
,
1976
, “
Wall Pressure Spectra Scaling Downstream of Stenoses in Steady Tube Flow
,”
J. Biomech.
,
9
(
10
), pp.
633
640
.
13.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Najjar
,
F.
,
2003
, “
Numerical Study of Pulsatile Flow in a Constricted Channel
,”
J. Fluid Mech.
,
485
, pp.
337
378
.
14.
Fredberg
,
J. J.
,
1974
, “
Pseudo-Sound Generation at Atherosclerotic Constrictions in Arteries
,”
Bull. Math. Biol.
,
36
(
2
), pp.
143
155
.
15.
Owsley
,
N. L.
, and
Hull
,
A. J.
,
1998
, “
Beamformed Nearfield Imaging of a Simulated Coronary Artery Containing a Stenosis
,”
IEEE Trans. Med. Imaging
,
17
(
6
), pp.
900
909
.
16.
Cooper
,
D. B.
,
Roan
,
M. J.
, and
Vlachos
,
P. P.
,
2011
, “
Acoustic Source Separation for the Detection of Coronary Artery Sounds
,”
J. Acoust. Soc. Am.
,
130
(
6
), pp.
4158
4166
.
17.
Jones
,
S. A.
, and
Fronek
,
A.
,
1987
, “
Analysis of Break Frequencies Downstream of a Constriction in a Cylindrical Tube
,”
J. Biomech.
,
20
(
3
), pp.
319
327
.
18.
Ramakrishnan
,
S.
,
Udpa
,
S.
, and
Udpa
,
L.
,
2009
, “
A Numerical Model Simulating Sound Propagation in Human Thorax
,”
IEEE
International Symposium Biomedical Imaging From Nano to Macro
, Boston, MA, June 28–July 1, pp.
530
533
.
19.
Royston
,
T. J.
,
Zhang
,
X.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2002
, “
Modeling Sound Transmission Through the Pulmonary System and Chest With Application to Diagnosis of a Collapsed Lung
,”
J. Acoust. Soc. Am.
,
111
(
4
), p.
1931
.
20.
McKee
,
A. M.
, and
Goubran
,
R. A.
,
2005
, “
Sound Localization in the Human Thorax
,”
IEEE
Instrumentation and Measurement Technology Conference (IMTC)
, Ottawa, ON, Canada, May 16–19, pp. 117–122.
21.
Yazicioglu
,
Y.
,
Royston
,
T. J.
,
Spohnholtz
,
T.
,
Martin
,
B.
,
Loth
,
F.
, and
Bassiouny
,
H. S.
,
2005
, “
Acoustic Radiation From a Fluid-Filled, Subsurface Vascular Tube With Internal Turbulent Flow Due to a Constriction
,”
J. Acoust. Soc. Am.
,
118
(
2
), p.
1193
.
22.
Seo
,
J. H.
,
Bakhshaee
,
H.
,
Garreau
,
G.
,
Zhu
,
C.
,
Andreou
,
A.
,
Thompson
,
W. R.
, and
Mittal
,
R.
,
2017
, “
A Method for the Computational Modeling of the Physics of Heart Murmurs
,”
J. Comput. Phys
,
336
, pp. 546–568.
23.
Leatham
,
A.
,
1958
, “
Systolic Murmurs
,”
Circ.
,
17
(
4
), pp. 601–611.
24.
Sapsanis
,
C.
,
Tognetti
,
G.
,
Mittal
,
R.
,
Garreau
,
G.
,
Pouliquen
,
P. O.
,
Thompson
,
W. R.
, and
Andreou
,
A. G.
,
2018
, “
StethoVest: A Simultaneous Multichannel Wearable System for Cardiac Acoustic Mapping
,” IEEE Biomedical Circuits and Systems Conference (
BioCAS
), Cleveland, OH, Oct. 17–19, pp.
191
194
.
25.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
26.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.
27.
Zhu
,
C.
,
Seo
,
J. H.
,
Vedula
,
V.
, and
Mittal
,
R.
,
2017
, “
A Highly Scalable Sharp-Interface Immersed Boundary Method for Large-Scale Parallel Computers
,”
AIAA
Paper No. 2017-3622.
28.
Yellin
,
E. L.
,
1966
, “
Hydraulic Noise in Submerged and Bounded Liquid Jets
,”
Biomedical Fluid Mechanics Symposium
, Denver, CO, pp.
209
221
.
29.
Clark
,
C.
,
1976
, “
Turbulent Velocity Measurements in a Model of Aortic Stenosis
,”
J Biomech.
,
9
(
11
), pp.
677
687
.
30.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
(
7
), pp.
505
516
.
31.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1983
, “
Flow Disturbance Measurements Through a Constricted Tube at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
(
12
), pp.
955
963
.
32.
Cassanova
,
R. A.
, and
Giddens
,
D. P.
,
1978
, “
Disorder Distal to Modeled Stenoses in Steady and Pulsatile Flow
,”
J. Biomech.
,
11
(
10–12
), pp.
441
453
.
33.
Edgar
,
N.
, and
Visbal
,
M.
,
2003
, “
A General Buffer Zone-Type Non-Reflecting Boundary Condition for Computational Aeroacoustics
,”
AIAA
Paper No. 2003-3300.
34.
Dean
,
W. R.
,
1927
, “
XVI. Note on the Motion of Fluid in a Curved Pipe
,”
Lond. Edinburgh, Dublin Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.
35.
Johansen
,
F. C. C.
,
1929
, “
Flow Through Pipe Orifices at Low Reynolds Numbers
,”
Proc. R. Soc. Lond. Ser. A
,
126
(
801
), pp.
231
245
.
36.
Beavers
,
G. S.
, and
Wilson
,
T. A.
,
1970
, “
Vortex Growth in Jets
,”
J. Fluid Mech.
,
44
(
1
), pp.
97
112
.
37.
Bickley
,
L.
, and
Szilagyi
,
P. G.
,
2012
,
Bates' Guide to Physical Examination and History-Taking
,
Lippincott Williams & Wilkins
, Philadelphia, PA.
38.
Royston
,
T. J.
,
Yazicioglu
,
Y.
, and
Loth
,
F.
,
2003
, “
Surface Response of a Viscoelastic Medium to Subsurface Acoustic Sources With Application to Medical Diagnosis
,”
J. Acoust. Soc. Am.
,
113
(
2
), pp.
1109
1121
.
39.
Ben-Israel
,
A.
, and
Greville
,
T. N.
,
2003
,
Generalized Inverses: Theory and Applications
, Vol. 15, Springer Science & Business Media, New York, pp. 261–263.
40.
Ben-Menahem
,
A.
, and
Singh
,
S. J.
,
2012
,
Seismic Waves and Sources
,
Springer Science & Business Media
, New York.
You do not currently have access to this content.