Nerve guidance conduits (NGCs) are tubular tissue engineering scaffolds used for nerve regeneration. The poor mechanical properties and porosity have always compromised their performances for guiding and supporting axonal growth. Therefore, in order to improve the properties of NGCs, the computational design approach was adopted to investigate the effects of different NGC structural features on their various properties, and finally, design an ideal NGC with mechanical properties matching human nerves and high porosity and permeability. Three common NGC designs, namely hollow luminal, multichannel, and microgrooved, were chosen in this study. Simulations were conducted to study the mechanical properties and permeability. The results show that pore size is the most influential structural feature for NGC tensile modulus. Multichannel NGCs have higher mechanical strength but lower permeability compared to other designs. Square pores lead to higher permeability but lower mechanical strength than circular pores. The study finally selected an optimized hollow luminal NGC with a porosity of 71% and a tensile modulus of 8 MPa to achieve multiple design requirements. The use of computational design and optimization was shown to be promising in future NGC design and nerve tissue engineering research.

References

1.
Kehoe
,
S.
,
Zhang
,
X. F.
, and
Boyd
,
D.
,
2012
, “
FDA Approved Guidance Conduits and Wraps for Peripheral Nerve Injury: A Review of Materials and Efficacy
,”
Injury
,
43
(
5
), pp.
553
572
.
2.
Zhang
,
S.
,
Vijayavenkataraman
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y.
, 2018, “
A Review on the Use of Computational Methods to Characterize, Design, and Optimize Tissue Engineering Scaffolds, With a Potential in 3D Printing Fabrication
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
(epub).
3.
Chiono
,
V.
, and
Tonda-Turo
,
C.
,
2015
, “
Trends in the Design of Nerve Guidance Channels in Peripheral Nerve Tissue Engineering
,”
Prog. Neurobiol.
,
131
, pp.
87
104
.
4.
De Ruiter
,
G. C. W.
,
Malessy
,
M. J. A.
,
Yaszemski
,
M. J.
,
Windebank
,
A. J.
, and
Spinner
,
R. J.
,
2009
, “
Designing Ideal Conduits for Peripheral Nerve Repair
,”
Neurosurg. Focus
,
26
(
2
), p.
E5
.
5.
Vijayavenkataraman
,
S.
,
Thaharah
,
S.
,
Zhang
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2018
, “
3D‐Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair
,”
Artif. Organs
(epub).
6.
Vijayavenkataraman
,
S.
,
Thaharah
,
S.
,
Zhang
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2019
, “
Electrohydrodynamic Jet 3D-Printed PCL/PAA Conductive Scaffolds With Tunable Biodegradability as Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair
,”
Mater. Des.
,
162
, pp.
171
184
.
7.
Zhang
,
X. F.
,
O'Shea
,
H.
,
Kehoe
,
S.
, and
Boyd
,
D.
,
2011
, “
Time-Dependent Evaluation of Mechanical Properties and In Vivo Cytocompatibility of Experimental Composite-Based Nerve Guidance Conduits
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1266
1274
.
8.
Yu
,
W.
,
Zhao
,
W.
,
Zhu
,
C.
,
Zhang
,
X.
,
Ye
,
D.
,
Zhang
,
W.
,
Zhou
,
Y.
,
Jiang
,
X.
, and
Zhang
,
Z.
,
2011
, “
Sciatic Nerve Regeneration in Rats by a Promising Electrospun Collagen/Poly(ε-Caprolactone) Nerve Conduit With Tailored Degradation Rate
,”
BMC Neurosci.
,
12
(
1
), p.
68
.
9.
Zeng
,
C.
,
Xiong
,
Y.
,
Xie
,
G.
,
Dong
,
P.
, and
Quan
,
D.
,
2014
, “
Fabrication and Evaluation of PLLA Multichannel Conduits With Nanofibrous Microstructure for the Differentiation of NSCs In Vivo
,”
Tissue Eng. Part A
,
20
(
5–6
), pp.
1038
1048
.
10.
Ni
,
H. C.
,
Tseng
,
T. C.
,
Chen
,
J. R.
,
Hsu
,
S. H.
, and
Chiu
,
I. M.
,
2013
, “
Fabrication of Bioactive Conduits Containing the Fibroblast Growth Factor 1 and Neural Stem Cells for Peripheral Nerve Regeneration Across a 15 mm Critical Gap
,”
Biofabrication
,
5
(
3
), p.
035010
.
11.
Dinis
,
T. M.
,
Elia
,
R.
,
Vidal
,
G.
,
Dermigny
,
Q.
,
Denoeud
,
C.
,
Kaplan
,
D. L.
,
Egles
,
C.
, and
Marin
,
F.
,
2015
, “
3D Multi-Channel Bi-Functionalized Silk Electrospun Conduits for Peripheral Nerve Regeneration
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
43
55
.
12.
Xie
,
H.
,
Yang
,
W.
,
Chen
,
J.
,
Zhang
,
J.
,
Lu
,
X.
,
Zhao
,
X.
,
Huang
,
K.
,
Li
,
H.
,
Chang
,
P.
,
Wang
,
Z.
, and
Wang
,
L.
,.,
2015
, “
A Silk Sericin/Silicone Nerve Guidance Conduit Promotes Regeneration of a Transected Sciatic Nerve
,”
Adv. Healthcare Mater.
,
4
(
15
), pp.
2195
2205
.
13.
Yucel
,
D.
,
Kose
,
G. T.
, and
Hasirci
,
V.
,
2010
, “
Polyester Based Nerve Guidance Conduit Design
,”
Biomaterials
,
31
(
7
), pp.
1596
1603
.
14.
Vijayavenkataraman
,
S.
,
Shuo
,
Z.
,
Fuh
,
J. Y. H.
, and
Lu
,
W.
,
2017
, “
Design of Three-Dimensional Scaffolds With Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An in Silico Study
,”
Bioengineering
,
4
(
4
), p.
66
.
15.
Heljak
,
M. K.
,
Kurzydlowski
,
K. J.
, and
Swieszkowski
,
W.
,
2017
, “
Computer Aided Design of Architecture of Degradable Tissue Engineering Scaffolds
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
15
), pp.
1623
1632
.
16.
Bawolin
,
N. K.
,
Li
,
M. G.
,
Chen
,
X. B.
, and
Zhang
,
W. J.
,
2010
, “
Modeling Material-Degradation-Induced Elastic Property of Tissue Engineering Scaffolds
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111001
.
17.
Vijayavenkataraman
,
S.
,
Zhang
,
L.
,
Zhang
,
S.
,
Hsi Fuh
,
J. Y.
, and
Lu
,
W. F.
, 2018, “
Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design
,”
ACS Appl. Bio Mater.
,
1
(2), pp. 259–269.
18.
Bawolin
,
N. K.
,
Dolovich
,
A. T.
,
Chen
,
D. X. B.
, and
Zhang
,
C. W.
,
2015
, “
Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081004
.
19.
Jung
,
J. W.
,
Yi
,
H. G.
,
Kang
,
T. Y.
,
Yong
,
W. J.
,
Jin
,
S.
,
Yun
,
W. S.
, and
Cho
,
D. W.
,
2013
, “
Evaluation of the Effective Diffusivity of a Freeform Fabricated Scaffold Using Computational Simulation
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
84501
.
20.
Jovicic
,
G. R.
,
Vukicevic
,
A. M.
, and
Filipovic
,
N. D.
,
2014
, “
Computational Assessment of Stent Durability Using Fatigue to Fracture Approach
,”
ASME J. Med. Devices
,
8
(
4
), p.
41002
.
21.
Vijayavenkataraman
,
S.
,
Zhang
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2018
, “
Electrohydrodynamic-Jetting (EHD-Jet) 3D-Printed Functionally Graded Scaffolds for Tissue Engineering Applications
,”
J. Mater. Res.
,
33
(
14
), pp.
1999
2011
.
22.
Chen
,
T.
,
McCarthy
,
M. M.
,
Guo
,
H.
,
Warren
,
R.
, and
Maher
,
S. A.
,
2018
, “
The Scaffold–Articular Cartilage Interface: A Combined In Vivo and in Silico Analysis Under Controlled Loading Conditions
,”
ASME J. Biomech. Eng.
,
140
(
9
), p.
091002
.
23.
Wieding
,
J.
,
Wolf
,
A.
, and
Bader
,
R.
,
2014
, “
Numerical Optimization of Open-Porous Bone Scaffold Structures to Match the Elastic Properties of Human Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
56
68
.
24.
Norato
,
J. A.
, and
Wagoner Johnson
,
A. J.
,
2011
, “
A Computational and Cellular Solids Approach to the Stiffness-Based Design of Bone Scaffolds
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091003
.
25.
Vijayavenkataraman
,
S.
,
Zhang
,
S.
,
Thaharah
,
S.
,
Sriram
,
G.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2018
, “
Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair
,”
Polymers
,
10
(
7
), p.
753
.
26.
Rutkowski
,
G. E.
,
Miller
,
C. A.
,
Jeftinija
,
S.
, and
Mallapragada
,
S. K.
,
2004
, “
Synergistic Effects of Micropatterned Biodegradable Conduits and Schwann Cells on Sciatic Nerve Regeneration
,”
J. Neural Eng.
,
1
(
3
), pp.
151
157
.
27.
Chew
,
J. C.
,
2018
, “
Using ANOVA to Find Differences in Population Means
,” iSixSigma, Connecticut, CT, accessed Nov. 30, 2018, https://www.isixsigma.com/tools-templates/analysis-of-variance-anova/using-anova-find-differences-population-means
28.
Ian
,
R. G.
,
2018
, “
Introduction to Taguchi Method
,” University of Massachusetts Amherst, Amherst, MA,, accessed Nov. 30, 2018, http://www.ecs.umass.edu/mie/labs/mda/fea/sankar/chap2.html
29.
Almeida
,
H. A.
, and
Bártolo
,
P. J.
,
2014
, “
Design of Tissue Engineering Scaffolds Based on Hyperbolic Surfaces: Structural Numerical Evaluation
,”
Med. Eng. Phys.
,
36
(
8
), pp.
1033
1040
.
30.
Almeida
,
H. A.
, and
Bártolo
,
P. J.
,
2013
, “
Numerical Simulations of Bioextruded Polymer Scaffolds for Tissue Engineering Applications
,”
Polym. Int.
,
62
(
11
), pp.
1544
1552
.
31.
Ali
,
D.
, and
Sen
,
S.
,
2017
, “
Finite Element Analysis of Mechanical Behavior, Permeability and Fluid Induced Wall Shear Stress of High Porosity Scaffolds With Gyroid and Lattice-Based Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
262
270
.
32.
Rahbari
,
A.
,
Montazerian
,
H.
,
Davoodi
,
E.
, and
Homayoonfar
,
S.
,
2017
, “
Predicting Permeability of Regular Tissue Engineering Scaffolds: Scaling Analysis of Pore Architecture, Scaffold Length, and Fluid Flow Rate Effects
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
231
241
.
33.
Lowe
,
G. D. O.
,
Lee
,
A. J.
,
Rumley
,
A.
,
Price
,
J. F.
, and
Fowkes
,
F. G. R.
,
1997
, “
Blood Viscosity and Risk of Cardiovascular Events: The Edinburgh Artery Study
,”
Br. J. Haematol.
,
91
(
1
), pp.
168
173
.
34.
Kim
,
H. J.
,
Kim
,
J.
,
Zandieh
,
O.
,
Chae
,
M.-S.
,
Kim
,
T. S.
,
Lee
,
J. H.
,
Park
,
J. H.
,
Kim
,
S.
, and
Hwang
,
K. S.
,
2014
, “
Piezoelectric Layer Embedded-Microdiaphragm Sensors for the Determination of Blood Viscosity and Density
,”
Appl. Phys. Lett.
,
105
(
15
), p.
153504
.
35.
Egan
,
P. F.
,
Gonella
,
V. C.
,
Engensperger
,
M.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2017
, “
Computationally Designed Lattices With Tuned Properties for Tissue Engineering Using 3D Printing
,”
PLoS One
,
12
(
8
), p.
e0182902
.
36.
Bružauskaitė
,
I.
,
Bironaitė
,
D.
,
Bagdonas
,
E.
, and
Bernotienė
,
E.
,
2016
, “
Scaffolds and Cells for Tissue Regeneration: Different Scaffold Pore Sizes—Different Cell Effects
,”
Cytotechnology
,
68
(
3
), pp.
355
369
.
37.
Truscello
,
S.
,
Kerckhofs
,
G.
,
Van Bael
,
S.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Van Oosterwyck
,
H.
,
2012
, “
Prediction of Permeability of Regular Scaffolds for Skeletal Tissue Engineering: A Combined Computational and Experimental Study
,”
Acta Biomater.
,
8
(
4
), pp.
1648
1658
.
38.
Balgude
,
A. P.
,
Yu
,
X.
,
Szymanski
,
A.
, and
Bellamkonda
,
R. V.
,
2001
, “
Agarose Gel Stiffness Determines Rate of DRG Neurite Extension in 3D Cultures
,”
Biomaterials
,
22
(
10
), pp.
1077
1084
.
39.
Sundararaghavan
,
H. G.
,
Monteiro
,
G. A.
,
Firestein
,
B. L.
, and
Shreiber
,
D. I.
,
2009
, “
Neurite Growth in 3D Collagen Gels With Gradients of Mechanical Properties
,”
Biotechnol. Bioeng.
,
102
(
2
), pp.
632
643
.
40.
Wang
,
G. W.
,
Yang
,
H.
,
Wu
,
W. F.
,
Zhang
,
P.
, and
Wang
,
J. Y.
,
2017
, “
Design and Optimization of a Biodegradable Porous Zein Conduit Using Microtubes as a Guide for Rat Sciatic Nerve Defect Repair
,”
Biomaterials
,
131
, pp.
145
159
.
You do not currently have access to this content.