Abstract

Quantitative magnetic resonance imaging (qMRI), in combination with mechanical testing, offers potential to investigate how loading (e.g., from daily physical exercise) is related to joint and tissue function. However, current testing devices compatible with magnetic resonance imaging (MRI) are often limited to uniaxial compression, often applying low loads, or loading individual tissues (instead of multiple), while more complex simulators do not facilitate MRI. Hence, in this work, we designed, built and tested (N = 1) an MRI-compatible multi-axial load-control system, which enables scanning cadaveric joints (healthy or pathologic) loaded to physiologically relevant levels. Testing involved estimating and validating physiologic loading conditions before implementing them experimentally on cadaver knees to simulate and image gait loading (stance and swing). The resulting design consisted of a portable loading device featuring pneumatic actuators to reach a combined loading scenario, including axial compression (≤2.5 kN), shear (≤1 kN), bending (≤30 N·m) and muscle tension. Initial laboratory testing was carried out; specifically, the device was instrumented with force and pressure sensors to evaluate loading and contact response repeatability in one cadaver knee specimen. This loading system was able to simulate healthy or pathologic gait with reasonable repeatability (e.g., 1.23–2.91% coefficient of variation for axial compression), comparable to current state-of-the-art simulators, leading to generally consistent contact responses. Contact measurements demonstrated a tibiofemoral to patellofemoral load transfer with knee flexion and large contact pressures concentrated over small sites between the femoral cartilage and menisci, agreeing with experimental studies and numerical simulations in the literature.

References

1.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.10.1016/j.jbiomech.2015.12.020
2.
Sharma
,
L.
,
Song
,
J.
,
Felson
,
D. T.
,
Cahue
,
S.
,
Shamiyeh
,
E.
, and
Dunlop
,
D. D.
,
2001
, “
The Role of Knee Alignment in Disease Progression and Functional Decline in Knee Osteoarthritis
,”
Knee Alignment Knee Osteoarthritis
,
286
(
2
), pp.
188
195
.10.1001/jama.286.2.188
3.
Teichtahl
,
A. J.
,
Cicuttini
,
F. M.
,
Abram
,
F.
,
Wang
,
Y.
,
Pelletier
,
J. P.
,
Dodin
,
P.
, and
Martel-Pelletier
,
J.
,
2017
, “
Meniscal Extrusion and Bone Marrow Lesions Are Associated With Incident and Progressive Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
25
(
7
), pp.
1076
1083
.10.1016/j.joca.2017.02.792
4.
Samaan
,
M. A.
,
Facchetti
,
L.
,
Pedoia
,
V.
,
Tanaka
,
M. S.
,
Link
,
T. M.
,
Souza
,
R. B.
,
Ma
,
C. B.
, and
Li
,
X.
,
2017
, “
Cyclops Lesions Are Associated With Altered Gait Patterns and Medial Knee Joint Cartilage Degeneration at 1 Year After ACL-Reconstruction
,”
J. Orthop. Res.
,
35
(
10
), pp.
2275
2281
.10.1002/jor.23530
5.
Utting
,
M. R.
,
Davies
,
G.
, and
Newman
,
J. H.
,
2005
, “
Is Anterior Knee Pain a Predisposing Factor to Patellofemoral Osteoarthritis?
,”
Knee
,
12
(
5
), pp.
362
365
.10.1016/j.knee.2004.12.006
6.
Borotikar
,
B. S.
, and
Sheehan
,
F. T.
,
2013
, “
In Vivo Patellofemoral Contact Mechanics During Active Extension Using a Novel Dynamic MRI-Based Methodology
,”
Osteoarthritis Cartilage
,
21
(
12
), pp.
1886
1894
.10.1016/j.joca.2013.08.023
7.
Farrokhi
,
S.
,
Keyak
,
J. H.
, and
Powers
,
C. M.
,
2011
, “
Individuals With Patellofemoral Pain Exhibit Greater Patellofemoral Joint Stress: A Finite Element Analysis Study
,”
Osteoarthritis Cartilage
,
19
(
3
), pp.
287
294
.10.1016/j.joca.2010.12.001
8.
Felson
,
D. T.
,
Lawrence
,
R. C.
,
Dieppe
,
P. A.
,
Hirsch
,
R.
,
Helmick
,
C. G.
,
Jordan
,
J. M.
,
Kington
,
R. S.
, et al.,
2000
, “
Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors
,”
Ann. Intern. Med.
,
133
(
8
), pp.
635
646
.10.7326/0003-4819-133-8-200010170-00016
9.
Wilson
,
D. R.
,
McWalter
,
E. J.
, and
Johnston
,
J. D.
,
2008
, “
The Measurement of Joint Mechanics and Their Role in Osteoarthritis Genesis and Progression
,”
Rheum. Dis. Clin. N. Am.
,
34
(
3
), pp.
605
622
.10.1016/j.rdc.2008.05.002
10.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
, and
Dunbar
,
M. J.
,
2008
, “
Biomechanical Changes at the Hip, Knee, and Ankle Joints During Gait Are Associated With Knee Osteoarthritis Severity
,”
J. Orthop. Res.
,
26
(
3
), pp.
332
341
.10.1002/jor.20496
11.
Breedveld
,
F. C.
,
2004
, “
Osteoarthritis–the Impact of a Serious Disease
,”
Rheumatology
,
43
(
90001
), pp.
4i
i8
.10.1093/rheumatology/keh102
12.
Poole
,
A. R.
,
1999
, “
An Introduction to the Pathophysiology of Osteoarthritis
,”
Front. Biosci.
,
4
(
1–3
), pp.
d662
d670
.10.2741/Poole
13.
Bender
,
B.
,
Perry
,
M.
,
Ramsey
,
F.
,
Boeselager
,
G.
,
Mann
,
L.
,
Brelosky
,
T.
,
Ferraro
,
E.
, and
Jackson-Thompson
,
J.
,
1998
, “
Prevalence and Impact of Chronic Joint Symptoms—Seven States, 1996
,”
Morb. Mortal. Wkly. Rep.
,
279
(
24
), pp.
1940
1941
.10.1001/jama.279.24.1940
14.
Hootman
,
J. M.
, and
Helmick
,
C. G.
,
2006
, “
Projections of U.S. Prevalence of Arthritis and Associated Activity Limitations
,”
Arthritis Rheum.
,
54
(
1
), pp.
226
229
.10.1002/art.21562
15.
Lawrence
,
R. C.
,
Helmick
,
C. G.
,
Arnett
,
F. C.
,
Deyo
,
R. A.
,
Felson
,
D. T.
,
Giannini
,
E. H.
,
Heyse
,
S. P.
, et al.,
1998
, “
Estimates of the Prevalence of Arthritis and Selected Musculoskeletal Disorders in the United States
,”
Arthritis Rheum.
,
41
(
5
), pp.
778
799
.10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V
16.
Pendleton
,
A.
,
Arden
,
N.
,
Dougados
,
M.
,
Doherty
,
M.
,
Bannwarth
,
B.
,
Bijlsma
,
J. W. J.
,
Cluzeau
,
F.
, et al.,
2000
, “
EULAR Recommendations for the Management of Knee Osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT)
,”
Ann. Rheum. Dis.
,
59
(
12
), pp.
936
944
.10.1136/ard.59.12.936
17.
March
,
L. M.
, and
Bachmeier
,
C. J. M.
,
1997
, “
Economics of Osteoarthritis: A Global Perspective
,”
Bailliere Clin. Rheumatol.
,
11
(
4
), pp.
817
834
.10.1016/S0950-3579(97)80011-8
18.
Salmon
,
J. H.
,
Rat
,
A. C.
,
Sellam
,
J.
,
Michel
,
M.
,
Eschard
,
J. P.
,
Guillemin
,
F.
,
Jolly
,
D.
, and
Fautrel
,
B.
,
2016
, “
Economic Impact of Lower-Limb Osteoarthritis Worldwide: A Systematic Review of Cost-of-Illness Studies
,”
Osteoarthritis Cartilage
,
24
(
9
), pp.
1500
1508
.10.1016/j.joca.2016.03.012
19.
Chen
,
A.
,
Gupte
,
C.
,
Akhtar
,
K.
,
Smith
,
P.
, and
Cobb
,
J.
,
2012
, “
The Global Economic Cost of Osteoarthritis: How the UK Compares
,”
Arthritis
,
2012
, pp.
1
6
.10.1155/2012/698709
20.
Toivanen
,
A. T.
,
Heliovaara
,
M.
,
Impivaara
,
O.
,
Arokoski
,
J. P. A.
,
Knekt
,
P.
,
Lauren
,
H.
, and
Kroger
,
H.
,
2010
, “
Obesity, Physically Demanding Work and Traumatic Knee Injury Are Major Risk Factors for Knee Osteoarthritis–a Population-Based Study With a Follow-Up of 22 Years
,”
Rheumatology
,
49
(
2
), pp.
308
314
.10.1093/rheumatology/kep388
21.
Andriacchi
,
T. P.
,
Mündermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the in Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
22.
Felson
,
D. T.
,
Lawrence
,
R. C.
,
Hochberg
,
M. C.
,
McAlindon
,
T.
,
Dieppe
,
P. A.
,
Minor
,
M. A.
,
Blair
,
S. N.
, et al.,
2000
, “
Osteoarthritis: New Insights. Part 2: Treatment Approaches
,”
Ann. Intern. Med.
,
133
(
9
), pp.
726
737
.10.7326/0003-4819-133-9-200011070-00015
23.
Guermazi
,
A.
,
Hayashi
,
D.
,
Roemer
,
F. W.
, and
Felson
,
D. T.
,
2013
, “
Osteoarthritis: A Review of Strengths and Weaknesses of Different Imaging Options
,”
Rheum. Dis. Clin. N. Am.
,
39
(
3
), pp.
567
591
.10.1016/j.rdc.2013.02.001
24.
Matzat
,
S. J.
,
Kogan
,
F.
,
Fong
,
G. W.
, and
Gold
,
G. E.
,
2014
, “
Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis
,”
Curr. Rheumatol. Rep.
,
16
(
11
), p.
462
.10.1007/s11926-014-0462-3
25.
Matzat
,
S. J.
,
van Tiel
,
J.
,
Gold
,
G. E.
, and
Oei
,
E. H.
,
2013
, “
Quantitative MRI Techniques of Cartilage Composition
,”
Quant. Imaging Med. Surg.
,
3
(
3
), pp.
162
174
.10.3978/j.issn.2223-4292.2013.06.04
26.
Samosky
,
J. T.
,
Burstein
,
D.
,
Grimson
,
W. E.
,
Howe
,
R.
,
Martin
,
S.
, and
Gray
,
M L.
,
2005
, “
Spatially-Localized Correlation of dGEMRIC-Measured GAG Distribution and Mechanical Stiffness in the Human Tibial Plateau
,”
J. Orthop. Res.
,
23
(
1
), pp.
93
101
.10.1016/j.orthres.2004.05.008
27.
Schoenbauer
,
E.
,
Szomolanyi
,
P.
,
Shiomi
,
T.
,
Juras
,
V.
,
Zbýň
,
Š.
,
Zak
,
L.
,
Weber
,
M.
, and
Trattnig
,
S.
,
2015
, “
Cartilage Evaluation With Biochemical MR Imaging Using in Vivo Knee Compression at 3T-Comparison of Patients After Cartilage Repair With Healthy Volunteers
,”
J. Biomech.
,
48
(
12
), pp.
3349
3355
.10.1016/j.jbiomech.2015.06.016
28.
Song
,
Y.
,
Greve
,
J. M.
,
Carter
,
D. R.
,
Koo
,
S.
, and
Giori
,
N. J.
,
2006
, “
Articular Cartilage MR Imaging and Thickness Mapping of a Loaded Knee Joint Before and After Meniscectomy
,”
Osteoarthritis Cartilage
,
14
(
8
), pp.
728
737
.10.1016/j.joca.2006.01.011
29.
Freutel
,
M.
,
Seitz
,
A. M.
,
Galbusera
,
F.
,
Bornstedt
,
A.
,
Rasche
,
V.
,
Knothe Tate
,
M. L.
,
Ignatius
,
A.
, and
Dürselen
,
L.
,
2014
, “
Medial Meniscal Displacement and Strain in Three Dimensions Under Compressive Loads: MR Assessment
,”
J. Magn. Reson. Imaging
,
40
(
5
), pp.
1181
1188
.10.1002/jmri.24461
30.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoro Patellar Joints Under Static Loading
,”
J. Biomech.
,
32
(
12
), pp.
1287
1295
.10.1016/S0021-9290(99)00130-X
31.
Maletsky
,
L.
,
Louie
,
E.
,
Akhbari
,
B.
,
Dickinson
,
M.
,
Eboch
,
W.
,
Fitzwater
,
F.
, and
Shalhoub
,
S.
,
2015
, “
In Vitro Experimental Testing of the Human Knee: A Concise Review
,”
J. Knee Surg.
,
29
(
2
), pp.
138
148
.10.1055/s-0035-1566739
32.
Fitzpatrick
,
C. K.
,
Maag
,
C.
,
Clary
,
C. W.
,
Metcalfe
,
A.
,
Langhorn
,
J.
, and
Rullkoetter
,
P. J.
,
2016
, “
Validation of a New Computational 6-DOF Knee Simulator During Dynamic Activities
,”
J. Biomech.
,
49
(
14
), pp.
3177
3184
.10.1016/j.jbiomech.2016.07.040
33.
Wünschel
,
M.
,
Leasure
,
J. M.
,
Dalheimer
,
P.
,
Kraft
,
N.
,
Wülker
,
N.
, and
Müller
,
O.
,
2013
, “
Differences in Knee Joint Kinematics and Forces After Posterior Cruciate Retaining and Stabilized Total Knee Arthroplasty
,”
Knee
,
20
(
6
), pp.
416
421
.10.1016/j.knee.2013.03.005
34.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
35.
Müller
,
O.
,
Lo
,
J.
,
Wünschel
,
M.
,
Obloh
,
C.
, and
Wülker
,
N.
,
2009
, “
Simulation of Force Loaded Knee Movement in a Newly Developed in Vitro Knee Simulator/Simulation Von Belastungsabhängigen Kniebewegungen in Einem Neuartigen Knie-Simulator Für In-vitro-Studien
,”
Biomed. Tech. (Berl)
,
54
(
3
), pp.
142
149
.10.1515/BMT.2009.015
36.
Lo
,
J.
,
Müller
,
O.
,
Wünschel
,
M.
,
Bauer
,
S.
, and
Wülker
,
N.
,
2008
, “
Forces in Anterior Cruciate Ligament During Simulated Weight-Bearing Flexion With Anterior and Internal Rotational Tibial Load
,”
J. Biomech.
,
41
(
9
), pp.
1855
1861
.10.1016/j.jbiomech.2008.04.010
37.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
,
2005
, “
Simulating Dynamic Activities Using a Five-Axis Knee Simulator
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
123
133
.10.1115/1.1846070
38.
Li
,
G.
,
Zayontz
,
S.
,
DeFrate
,
L. E.
,
Most
,
E.
,
Suggs
,
J. F.
, and
Rubash
,
H. E.
,
2004
, “
Kinematics of the Knee at High Flexion Angles: An in Vitro Investigation
,”
J. Orthop. Res.
,
22
(
1
), pp.
90
95
.10.1016/S0736-0266(03)00118-9
39.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.-Y.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and in-Situ Forces in the ACL
,”
J. Biomech.
,
32
(
4
), pp.
395
400
.10.1016/S0021-9290(98)00181-X
40.
Zavatsky
,
A. B.
,
1997
, “
A Kinematic-Freedom Analysis of a Flexed-Knee-Stance Testing Rig
,”
J. Biomech.
,
30
(
3
), pp.
277
280
.10.1016/S0021-9290(96)00142-X
41.
Petersilge
,
W. J.
,
Oishi
,
C. S.
,
Kaufman
,
K. R.
,
Irby
,
S. E.
, and
Colwell
,
C. W.
,
1994
, “
The Effect of Trochlear Design on Patellofemoral Shear and Compressive Forces in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
309
(
309
), pp.
124
130
.https://pubmed.ncbi.nlm.nih.gov/7994950/
42.
Shoemaker
,
S. C.
,
Adams
,
D.
,
Daniel
,
D. M.
, and
Woo
,
S. L.-Y.
,
1993
, “
Quadriceps/Anterior Cruciate Graft Interaction: An in Vitro Study of Joint Kinematics and Anterior Cruciate Ligament Graft Tension
,”
Clin. Orthop. Relat. Res.
,
294
, pp.
379
390
.10.1097/00003086-199309000-00054
43.
Gu
,
W.
, and
Pandy
,
M. G.
,
2020
, “
Direct Validation of Human Knee-Joint Contact Mechanics Derived From Subject-Specific Finite-Element Models of the Tibiofemoral and Patellofemoral Joints
,”
ASME J. Biomech. Eng.
,
142
(
7
), p.
071001
.10.1115/1.4045594
44.
Naghibi Beidokhti
,
H.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.10.1016/j.jbiomech.2017.08.030
45.
Rachmat
,
H. H.
,
Janssen
,
D.
,
Verkerke
,
G. J.
,
Diercks
,
R. L.
, and
Verdonschot
,
N.
,
2016
, “
In-Situ Mechanical Behavior and Slackness of the Anterior Cruciate Ligament at Multiple Knee Flexion Angles
,”
Med. Eng. Phys.
,
38
(
3
), pp.
209
215
.10.1016/j.medengphy.2015.11.011
46.
Barink
,
M.
,
Meijerink
,
H.
,
Verdonschot
,
N.
,
van Kampen
,
A.
, and
de Waal Malefijt
,
M.
,
2007
, “
Asymmetrical Total Knee Arthroplasty Does Not Improve Patella Tracking: A Study Without Patella Resurfacing
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
15
(
2
), pp.
184
191
.10.1007/s00167-006-0158-y
47.
Lawless
,
I. M.
,
Ding
,
B.
,
Cazzolato
,
B. S.
, and
Costi
,
J. J.
,
2014
, “
Adaptive Velocity-Based Six Degree of Freedom Load Control for Real-Time Unconstrained Biomechanical Testing
,”
J. Biomech.
,
47
(
12
), pp.
3241
3247
.10.1016/j.jbiomech.2014.06.023
48.
Yildirim
,
G.
,
Walker
,
P. S.
, and
Boyer
,
J.
,
2009
, “
Total Knees Designed for Normal Kinematics Evaluated in an Up-and-Down Crouching Machine
,”
J. Orthop. Res.
,
27
(
8
), pp.
1022
1027
.10.1002/jor.20839
49.
Si-Hoe
,
K. M.
,
Teoh
,
S. H.
, and
Teo
,
J.
,
2006
, “
Radio-Translucent 3-Axis Mechanical Testing Rig for the Spine in Micro-CT
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
957
964
.10.1115/1.2375136
50.
Shelley
,
F. J.
,
Anderson
,
D. D.
,
Kolar
,
M. J.
,
Miller
,
M. C.
, and
Rubash
,
H. E.
,
1991
, “
A Device to Model the Hip During Stair Climbing, Including Consideration of the Extensor, Abductor and Adductor Muscle Groups
,”
ASME Adv. Bioeng.
,
20
, pp.
173
175
.
51.
Shelley
,
F. J.
,
Anderson
,
D. D.
,
Kolar
,
M. J.
,
Miller
,
M. C.
, and
Rubash
,
H. E.
,
1996
, “
Physical Modelling of Hip Joint Forces in Stair Climbing
,”
Proc. Inst. Mech. Eng., Part H
,
210
(
1
), pp.
65
68
.10.1243/PIME_PROC_1996_210_391_02
52.
Jerban
,
S.
,
Chang
,
E. Y.
, and
Du
,
J.
,
2020
, “
Magnetic Resonance Imaging (MRI) Studies of Knee Joint Under Mechanical Loading: Review
,”
Magn. Reson. Imaging
,
65
, pp.
27
36
.10.1016/j.mri.2019.09.007
53.
McWalter
,
E. J.
,
O'Kane
,
C. M.
,
FitzPatrick
,
D. P.
, and
Wilson
,
D. R.
,
2014
, “
Validation of an MRI-Based Method to Assess Patellofemoral Joint Contact Areas in Loaded Knee Flexion in Vivo
,”
J. Magn. Reson. Imaging
,
39
(
4
), pp.
978
987
.10.1002/jmri.24240
54.
Shalhoub
,
S.
, and
Maletsky
,
L. P.
,
2014
, “
Variation in Patellofemoral Kinematics Due to Changes in Quadriceps Loading Configuration During in Vitro Testing
,”
J. Biomech.
,
47
(
1
), pp.
130
136
.10.1016/j.jbiomech.2013.09.019
55.
Fellows
,
R. A.
,
Hill
,
N. A.
,
Gill
,
H. S.
,
MacIntyre
,
N. J.
,
Harrison
,
M. M.
,
Ellis
,
R. E.
, and
Wilson
,
D. R.
,
2005
, “
Magnetic Resonance Imaging foriin Vivo Assessment of Three-Dimensional Patellar Tracking
,”
J. Biomech.
,
38
(
8
), pp.
1643
1652
.10.1016/j.jbiomech.2004.07.021
56.
Butz
,
K. D.
,
Chan
,
D. D.
,
Nauman
,
E. A.
, and
Neu
,
C. P.
,
2011
, “
Stress Distributions and Material Properties Determined in Articular Cartilage From MRI-Based Finite Strains
,”
J. Biomech.
,
44
(
15
), pp.
2667
2672
.10.1016/j.jbiomech.2011.08.005
57.
Chan
,
D. D.
,
Neu
,
C. P.
, and
Hull
,
M. L.
,
2009
, “
Articular Cartilage Deformation Determined in an Intact Tibiofemoral Joint by Displacement-Encoded Imaging
,”
Magn. Reson. Med.
,
61
(
4
), pp.
989
993
.10.1002/mrm.21927
58.
Chan
,
D. D.
,
Neu
,
C. P.
, and
Hull
,
M. L.
,
2009
, “
In Situ Deformation of Cartilage in Cyclically Loaded Tibiofemoral Joints by Displacement-Encoded MRI
,”
Osteoarthritis Cartilage
,
17
(
11
), pp.
1461
1468
.10.1016/j.joca.2009.04.021
59.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
60.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
61.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured in Vivo With a Follow-Up of 6–10 Months
,”
Clin. Biomech.
,
24
(
4
), pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
62.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured in Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
63.
Dullaert
,
K.
,
Hagen
,
J. E.
,
Simons
,
P.
,
Gras
,
F.
,
Gueorguiev
,
B.
,
Richards
,
R. G.
, and
Klos
,
K.
,
2017
, “
Influence of Tibialis Posterior Muscle Activation on Foot Anatomy Under Axial Loading: A Biomechanical CT Human Cadaveric Study
,”
Foot Ankle Surg.
,
23
(
4
), pp.
250
254
.10.1016/j.fas.2016.07.003
64.
Greaves
,
L. L.
,
Gilbart
,
M. K.
,
Yung
,
A.
,
Kozlowski
,
P.
, and
Wilson
,
D. R.
,
2009
, “
Deformation and Recovery of Cartilage in the Intact Hip Under Physiological Loads Using 7T MRI
,”
J. Biomech.
,
42
(
3
), pp.
349
354
.10.1016/j.jbiomech.2008.11.025
65.
Greaves
,
L. L.
,
Gilbart
,
M. K.
,
Yung
,
A. C.
,
Kozlowski
,
P.
, and
Wilson
,
D. R.
,
2010
, “
Effect of Acetabular Labral Tears, Repair and Resection on Hip Cartilage Strain: A 7T MR Study
,”
J. Biomech.
,
43
(
5
), pp.
858
863
.10.1016/j.jbiomech.2009.11.016
66.
Changoor
,
A.
,
Fereydoonzad
,
L.
,
Yaroshinsky
,
A.
, and
Buschmann
,
M. D.
,
2010
, “
Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
064502
.10.1115/1.4000991
67.
Duffy
,
D. J.
,
Millard
,
R. P.
,
Breur
,
G. J.
,
Moore
,
G. E.
, and
Main
,
R. P.
,
2015
, “
Ex Vivo Biomechanical Comparison of Barbed Suture and Standard Polypropylene Suture for Acute Tendon Laceration in a Canine Model
,”
Vet. Comp. Orthop. Traumatol.
,
28
(
4
), pp.
263
269
.10.3415/VCOT-14-11-0174
68.
Lai
,
C. H. Y.
, and
Li-Tsang
,
C. W. P.
,
2009
, “
Validation of the Pliance X System in Measuring Interface Pressure Generated by Pressure Garment
,”
Burns
,
35
(
6
), pp.
845
851
.10.1016/j.burns.2008.09.013
69.
Hancock
,
G. E.
,
Hepworth
,
T.
, and
Wembridge
,
K.
,
2018
, “
Accuracy and Reliability of Knee Goniometry Methods
,”
J. Exp. Orthop.
,
5
(
1
), p.
46
.10.1186/s40634-018-0161-5
70.
Glüer
,
C.-C.
,
Blake
,
G.
,
Lu
,
Y.
,
Blunt
,
B. A.
,
Jergas
,
M.
, and
Genant
,
H. K.
,
1995
, “
Accurate Assessment of Precision Errors: How to Measure the Reproducibility of Bone Densitometry Techniques
,”
Osteoporos. Int.
,
5
(
4
), pp.
262
270
.10.1007/BF01774016
71.
Bruton
,
A.
,
Conway
,
J. H.
, and
Holgate
,
S. T.
,
2000
, “
Reliability: What is It, and How is It Measured?
,”
Physiotherapy
,
86
(
2
), pp.
94
99
.10.1016/S0031-9406(05)61211-4
72.
Hopkins
,
W. G.
,
2000
, “
Measures of Reliability in Sports Medicine and Science
,”
Sports Med.
,
30
(
1
), pp.
1
15
.10.2165/00007256-200030010-00001
73.
Imhauser
,
C. W.
,
Baumann
,
A. P.
,
Liu
,
X. C.
,
Bischoff
,
J. E.
,
Verdonschot
,
N.
,
Fregly
,
B. J.
,
Elmasry
,
S. S.
, et al.,
2023
, “
Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives
,”
J. Orthop. Res.
,
41
(
12
), pp.
2569
2578
.10.1002/jor.25652
74.
Chen
,
L.
,
Gordon
,
K.
, and
Hurtig
,
M.
,
2014
, “
Design and Validation of a Cadaveric Knee Joint Loading Device Compatible With Magnetic Resonance Imaging and Computed Tomography
,”
Med. Eng. Phys.
,
36
(
10
), pp.
1346
1351
.10.1016/j.medengphy.2014.06.017
75.
Shiomi
,
T.
,
Nishii
,
T.
,
Tanaka
,
H.
,
Yamazaki
,
Y.
,
Murase
,
K.
,
Myoui
,
A.
,
Yoshikawa
,
H.
, and
Sugano
,
N.
,
2010
, “
Loading and Knee Alignment Have Significant Influence on Cartilage MRI T2 in Porcine Knee Joints
,”
Osteoarthritis Cartilage
,
18
(
7
), pp.
902
908
.10.1016/j.joca.2010.05.002
76.
Quenneville
,
C. E.
,
Fraser
,
G. S.
, and
Dunning
,
C. E.
,
2010
, “
Development of an Apparatus to Produce Fractures From Short-Duration High-Impulse Loading With an Application in the Lower Leg
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
014502
.10.1115/1.4000084
77.
Martin
,
K. J.
,
Neu
,
C. P.
, and
Hull
,
M. L.
,
2007
, “
An MRI-Based Method to Align the Compressive Loading Axis for Human Cadaveric Knees
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
855
862
.10.1115/1.2800765
78.
Desloovere
,
K.
,
Wong
,
P.
,
Swings
,
L.
,
Callewaert
,
B.
,
Vandenneucker
,
H.
, and
Leardini
,
A.
,
2010
, “
Range of Motion and Repeatability of Knee Kinematics for 11 Clinically Relevant Motor Tasks
,”
Gait Posture
,
32
(
4
), pp.
597
602
.10.1016/j.gaitpost.2010.08.010
79.
Bruns
,
J.
,
Volkmer
,
M.
, and
Luessenhop
,
S.
,
1994
, “
Pressure Distribution in the Knee Joint: Influence Flexion without Ligament Dissection
,”
Arch. Orthop. Trauma Surg.
,
113
(
4
), pp.
204
209
.10.1007/BF00441833
80.
Harrington
,
I. J.
,
1983
, “
Static and Dynamic Loading Patterns in Knee Joints With Deformities
,”
J. Bone Jt. Surg. Am.
,
65
(
2
), pp.
247
259
.10.2106/00004623-198365020-00016
81.
Johnson
,
F.
,
Leitl
,
S.
, and
Waugh
,
W.
,
1980
, “
The Distribution of Load Across the Knee. A Comparison of Static and Dynamic Measurements
,”
J. Bone Jt. Surg. Br.
,
62-B
(
3
), pp.
346
349
.10.1302/0301-620X.62B3.7410467
82.
Papaioannou
,
G.
,
Nianios
,
G.
,
Mitrogiannis
,
C.
,
Fyhrie
,
D.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2008
, “
Patient-Specific Knee Joint Finite Element Model Validation With High-Accuracy Kinematics From Biplane Dynamic Roentgen Stereogrammetric Analysis
,”
J. Biomech.
,
41
(
12
), pp.
2633
2638
.10.1016/j.jbiomech.2008.06.027
83.
Halonen
,
K. S.
,
Dzialo
,
C. M.
,
Mannisi
,
M.
,
Venäläinen
,
M. S.
,
de Zee
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Workflow Assessing the Effect of Gait Alterations on Stresses in the Medial Tibial Cartilage - Combined Musculoskeletal Modelling and Finite Element Analysis
,”
Sci. Rep.
,
7
(
1
), p.
17396
.10.1038/s41598-017-17228-x
84.
Yang
,
N. H.
,
Nayeb-Hashemi
,
H.
,
Canavan
,
P. K.
, and
Vaziri
,
A.
,
2010
, “
Effect of Frontal Plane Tibiofemoral Angle on the Stress and Strain at the Knee Cartilage During the Stance Phase of Gait
,”
J. Orthop. Res.
,
28
(
12
), pp.
1539
1547
.10.1002/jor.21174
85.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
86.
Siston
,
R. A.
,
Maack
,
T. L.
,
Hutter
,
E. E.
,
Beal
,
M. D.
, and
Chaudhari
,
A. M. W.
,
2012
, “
Design and Cadaveric Validation of a Novel Device to Quantify Knee Stability During Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
115001
.10.1115/1.4007822
You do not currently have access to this content.