Abstract

This investigation is focused on developing a novel three-dimensional rational absolute nodal coordinate formulation (RANCF) fluid element based on cubic rational Bezier volume. The new fluid element can describe liquid columns with initially curved configurations precisely, performing better than the conventional absolute nodal coordinate formulation (ANCF) fluid element. A new kinematic description, which employs a different interpolation function to describe the displacement field, makes this element a true difference. The shape function is no longer calculated by an incomplete polynomial or nonrational B-spline function, replaced by the rational Bezier function. Dynamical model or governing equation of the RANCF fluid element is built based on the constitutive equation of fluid, momentum, and constraint equation. One liquid column with initially cylindrical configuration is established by the RANCF fluid element, the position vector of control points and their weights are calculated to achieve the specific initial configuration. A simulation of the cylindrical liquid column collapsing on a plane is implemented to verify the validity of the RANCF fluid element, and numerical results are in good agreement with those obtained in the literature. The convergence of the RANCF fluid element is also checked and proved not to be influenced by mesh size. Finally, the precise description ability of the RANCF fluid element is compared with that of the conventional ANCF fluid element, the former shows a great advantage.

References

1.
Reyhanoglu
,
M.
, and
Hervas
,
J. R.
,
2012
, “
Nonlinear Dynamics and Control of Space Vehicles With Multiple Fuel Slosh Modes
,”
Control Eng. Pract.
,
20
(
9
), pp.
912
918
.10.1016/j.conengprac.2012.05.011
2.
Noorian
,
M. A.
,
Haddadpour
,
H.
, and
Ebrahimian
,
M.
,
2016
, “
Stability Analysis of Elastic Launch Vehicles With Fuel Sloshing in Planar Flight Using a BEM-FEM Model
,”
Aerosp. Sci. Technol.
,
53
, pp.
74
84
.10.1016/j.ast.2016.02.028
3.
Chiba
,
M.
, and
Magata
,
H.
,
2017
, “
Influence of Liquid Sloshing on Dynamics of Flexible Space Structures
,”
J. Sound Vib.
,
401
, pp.
1
22
.10.1016/j.jsv.2017.04.029
4.
Bai
,
C. C.
, and
Guo
,
J. F.
,
2019
, “
Uncertainty Based Vibration/Gyro Composite Planetary Terrain Mapping
,”
Sensors
,
19
(
12
), p.
2681
.10.3390/s19122681
5.
Bai
,
C. C.
,
Guo
,
J. F.
, and
Zheng
,
H. X.
,
2019
, “
Three-Dimensional Vibration-Based Terrain Classification for Mobile Robots
,”
IEEE Access
,
7
, pp.
63485
63492
.10.1109/ACCESS.2019.2916480
6.
Mitra
,
S.
,
Wang
,
C. Z.
,
Reddy
,
J. N.
, and
Khoo
,
B. C.
,
2012
, “
A 3D Fully Coupled Analysis of Nonlinear Sloshing and Ship Motion
,”
Ocean Eng.
,
39
(
1
), pp.
1
13
.10.1016/j.oceaneng.2011.09.015
7.
Jiang
,
S. C.
,
Teng
,
B.
,
Bai
,
W.
, and
Gou
,
Y.
,
2015
, “
Numerical Simulation of Coupling Effect Between Ship Motion and Liquid Sloshing Under Wave Action
,”
Ocean Eng.
,
108
, pp.
140
154
.10.1016/j.oceaneng.2015.07.044
8.
Saripilli
,
J. R.
, and
Sen
,
D.
,
2018
, “
Numerical Studies on Effects of Slosh Coupling on Ship Motions and Derived Slosh Loads
,”
Appl. Ocean Res.
,
76
, pp.
71
87
.10.1016/j.apor.2018.04.009
9.
Ardakani
,
H. A.
, and
Bridges
,
T. J.
,
2010
, “
Dynamic Coupling Between Shallow-Water Sloshing and Horizontal Vehicle Motion
,”
Eur. J. Appl. Math.
,
21
(
6
), pp.
479
517
.10.1017/S0956792510000197
10.
Wang
,
L.
,
Octavio
,
J. R. J.
,
Wei
,
C.
, and
Shabana
,
A. A.
,
2015
, “
Low Order Continuum-Based Liquid Sloshing Formulation for Vehicle System Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021022
.10.1115/1.4027836
11.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2018
, “
ANCF Analysis of the Crude Oil Sloshing in Railroad Vehicle Systems
,”
J. Sound Vib.
,
433
, pp.
493
516
.10.1016/j.jsv.2018.06.035
12.
Ibrahim
,
R. A.
, and
Singh
,
B.
,
2018
, “
Assessment of Ground Vehicle Tankers Interacting With Liquid Sloshing Dynamics
,”
Int. J. Heavy Veh. Syst.
,
25
(
1
), pp.
23
112
.10.1504/IJHVS.2018.089894
13.
Li
,
Q.
,
Ma
,
X. R.
, and
Wang
,
T. S.
,
2011
, “
Equivalent Mechanical Model for Liquid Sloshing During Draining
,”
Acta Astronaut.
,
68
(
1–2
), pp.
91
100
.10.1016/j.actaastro.2010.06.052
14.
Li
,
Y. C.
, and
Wang
,
J. T.
,
2012
, “
A Supplementary, Exact Solution of an Equivalent Mechanical Model for a Sloshing Fluid in a Rectangular Tank
,”
J. Fluids Struct.
,
31
, pp.
147
151
.10.1016/j.jfluidstructs.2012.02.012
15.
Ebrahimian
,
M.
,
Noorian
,
M. A.
, and
Haddadpour
,
H.
,
2014
, “
Equivalent Mechanical Model of Liquid Sloshing in Multi-Baffled Containers
,”
Eng. Anal. Boundary Elem.
,
47
, pp.
82
95
.10.1016/j.enganabound.2014.06.001
16.
Wang
,
C. Z.
, and
Khoo
,
B. C.
,
2005
, “
Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations
,”
Ocean Eng.
,
32
(
2
), pp.
107
133
.10.1016/j.oceaneng.2004.08.001
17.
Cho
,
J. R.
,
Lee
,
H. W.
, and
Ha
,
S. Y.
,
2005
, “
Finite Element Analysis of Resonant Sloshing Response in 2-d Baffled Tank
,”
J. Sound Vib.
,
288
(
4–5
), pp.
829
845
.10.1016/j.jsv.2005.01.019
18.
Mitra
,
S.
, and
Sinhamahapatra
,
K. P.
,
2007
, “
Slosh Dynamics of Liquid-Filled Containers With Submerged Components Using Pressure-Based Finite Element Method
,”
J. Sound Vib.
,
304
(
1–2
), pp.
361
381
.10.1016/j.jsv.2007.03.014
19.
Chen
,
B. F.
, and
Nokes
,
R.
,
2005
, “
Time Independent Finite Difference Analysis of Fully Nonlinear and Viscous Fluid Sloshing in a Rectangular Tank
,”
J. Comput. Phys.
,
209
(
1
), pp.
47
81
.10.1016/j.jcp.2005.03.006
20.
Wu
,
C. H.
, and
Chen
,
B. F.
,
2009
, “
Sloshing Waves and Resonance Modes of Fluid in a 3D Tank by a Time-Independent Finite Difference Method
,”
Ocean Eng.
,
36
(
6–7
), pp.
500
510
.10.1016/j.oceaneng.2009.01.020
21.
Lee
,
S. H.
,
Lee
,
Y. G.
, and
Jeong
,
K. L.
,
2011
, “
Numerical Simulation of Three-Dimensional Sloshing Phenomena Using a Finite Difference Method With Marker-Density Scheme
,”
Ocean Eng.
,
38
(
1
), pp.
206
225
.10.1016/j.oceaneng.2010.10.008
22.
Dutta
,
S.
, and
Laha
,
M. K.
,
2000
, “
Analysis of the Small Amplitude Sloshing of a Liquid in a Rigid Container of Arbitrary Shape Using a Low‐Order Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
47
(
9
), pp.
1633
1648
.10.1002/(SICI)1097-0207(20000330)47:9<1633::AID-NME851>3.0.CO;2-1
23.
Gedikli
,
A.
, and
Ergüven
,
M. E.
,
2003
, “
Evaluation of Sloshing Problem by Variational Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
27
(
9
), pp.
935
943
.10.1016/S0955-7997(03)00046-8
24.
Firouz-Abadi
,
R. D.
,
Haddadpour
,
H.
, and
Ghasemi
,
M.
,
2009
, “
Reduced Order Modeling of Liquid Sloshing in 3D Tanks Using Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
33
(
6
), pp.
750
761
.10.1016/j.enganabound.2009.01.005
25.
Zhou
,
H.
,
Li
,
J. F.
, and
Wang
,
T. S.
,
2008
, “
Simulation of Liquid Sloshing in Curved-Wall Containers With Arbitrary Lagrangian Eulerian Method
,”
Int. J. Numer. Methods Fluids
,
57
(
4
), pp.
437
452
.10.1002/fld.1602
26.
Belakroum
,
R.
,
Kadja
,
M.
,
Mai
,
T. H.
, and
Maalouf
,
C.
,
2010
, “
An Efficient Passive Technique for Reducing Sloshing in Rectangular Tanks Partially Filled With Liquid
,”
Mech. Res. Commun.
,
37
(
3
), pp.
341
346
.10.1016/j.mechrescom.2010.02.003
27.
Watanabe
,
T.
,
2011
, “
Numerical Simulation of Liquid Sloshing Using Arbitrary Lagrangian-Eulerian Level Set Method
,”
Int. J. Multiphys.
,
5
(
4
), pp.
339
352
.10.1260/1750-9548.5.4.339
28.
Gómez-Goñi
,
J.
,
Garrido-Mendoza
,
C. A.
,
Cercós
,
J. L.
, and
González
,
L.
,
2013
, “
Two Phase Analysis of Sloshing in a Rectangular Container With Volume of Fluid (Vof) Methods
,”
Ocean Eng.
,
73
, pp.
208
212
.10.1016/j.oceaneng.2013.07.005
29.
Zhao
,
Y. C.
, and
Chen
,
H. C.
,
2015
, “
Numerical Simulation of 3D Sloshing Flow in Partially Filled Lng Tank Using a Coupled Level-Set and Volume-of-Fluid Method
,”
Ocean Eng.
,
104
, pp.
10
30
.10.1016/j.oceaneng.2015.04.083
30.
Elahi
,
R.
,
Passandideh-Fard
,
M.
, and
Javanshir
,
A.
,
2015
, “
Simulation of Liquid Sloshing in 2D Containers Using the Volume of Fluid Method
,”
Ocean Eng.
,
96
, pp.
226
244
.10.1016/j.oceaneng.2014.12.022
31.
Vorobyev
,
A.
,
Kriventsev
,
V.
, and
Maschek
,
W.
,
2011
, “
Simulation of Central Sloshing Experiments With Smoothed Particle Hydrodynamics (SPH) Method
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
3086
3096
.10.1016/j.nucengdes.2011.05.020
32.
Shao
,
J. R.
,
Li
,
H. Q.
,
Liu
,
G. R.
, and
Liu
,
M. B.
,
2012
, “
An Improved SPH Method for Modeling Liquid Sloshing Dynamics
,”
Comput. Struct.
,
100–101
, pp.
18
26
.10.1016/j.compstruc.2012.02.005
33.
Cao
,
X. Y.
,
Ming
,
F. R.
, and
Zhang
,
A. M.
,
2014
, “
Sloshing in a Rectangular Tank Based on SPH Simulation
,”
Appl. Ocean Res.
,
47
, pp.
241
254
.10.1016/j.apor.2014.06.006
34.
Atif
,
M. M.
,
Chi
,
S. W.
,
Grossi
,
E.
, and
Shabana
,
A. A.
,
2019
, “
Evaluation of Breaking Wave Effects in Liquid Sloshing Problems: ANCF/SPH Comparative Study
,”
Nonlinear Dyn.
,
97
(
1
), pp.
45
62
.10.1007/s11071-019-04927-5
35.
Wei
,
C.
,
Wang
,
L.
, and
Shabana
,
A. A.
,
2015
, “
A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051014
.10.1115/1.4028720
36.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2017
, “
Verification of a Total Lagrangian ANCF Solution Procedure for Fluid–Structure Interaction Problems
,”
J. Verif., Valid. Uncertainty Quantif.
,
2
(
4
), p.
041001
.10.1115/1.4038904
37.
Shi
,
H.
,
Wang
,
L.
,
Nicolsen
,
B.
, and
Shabana
,
A. A.
,
2017
, “
Integration of Geometry and Analysis for the Study of Liquid Sloshing in Railroad Vehicle Dynamics
,”
Proc. Inst. Mech. Eng., Part K
,
231
(
4
), pp.
608
629
.10.1177/1464419317696418
38.
Nicolsen
,
B.
,
Wang
,
L.
, and
Shabana
,
A.
,
2017
, “
Nonlinear Finite Element Analysis of Liquid Sloshing in Complex Vehicle Motion Scenarios
,”
J. Sound Vib.
,
405
, pp.
208
233
.10.1016/j.jsv.2017.05.021
39.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
On the Integration of Computer Aided Design and Analysis Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
181
197
.10.1007/s11044-009-9157-3
40.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
A Rational Finite Element Method Based on the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
58
(
3
), pp.
565
572
.10.1007/s11071-009-9501-4
41.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Integration of b-Spline Geometry and ANCF Finite Element Analysis
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
193
206
.10.1007/s11071-009-9641-6
42.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Rational Finite Elements and Flexible Body Dynamics
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
041007
.10.1115/1.4000970
43.
Pappalardo
,
C. M.
,
Yu
,
Z. Q.
,
Zhang
,
X. S.
, and
Shabana
,
A. A.
,
2016
, “
Rational ANCF Thin Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051009
.10.1115/1.4032385
44.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C.-W.
,
2014
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
.10.1115/1.4024910
45.
Ma
,
C.
,
Wei
,
C.
,
Sun
,
J.
, and
Liu
,
B.
,
2018
, “
Modeling Method and Application of Rational Finite Element Based on Absolute Nodal Coordinate Formulation
,”
Acta Mech. Solida Sin.
,
31
(
2
), pp.
207
228
.10.1007/s10338-018-0020-z
46.
Martin
,
J. C.
, and
Moyce
,
W. J.
,
1952
, “
Part IV: An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London. Ser. A
,
244
(
882
), pp.
312
324
.10.1098/rsta.1952.0006
You do not currently have access to this content.