Abstract

Precise dynamic parameters are of great significance to the model-based controller of industrial robots. The least square (LS) method is widely used to identify the dynamic parameters in reality, but it is sensitive to the measurement noise and may obtain a biased solution. Besides, the nonlinear dynamics are the key and difficult point of identification, such as the nonlinear friction and the coupling effect of adjacent joint, but they are seldom solved simply and effectively. To cope with the above issues, we propose a backpropagation learning (BPL) method for parameter identification. The mean square error between the measured torque and the calculated torque from the dynamic model is taken as the loss function. The gradient of the loss function with respect to the parameters is computed, and the parameters are updated in the negative gradient direction to minimize the loss function until finding the optimal parameters with the minimum loss function. The optimal parameters will not only fit the modeled torque but also compensate for the torque caused by the unmodeled factors, thus improving the parameter accuracy. The proposed method is essentially a supervised learning method, so the impact of measurement noise is reduced by continuous training with a large amount of valid data. The proposed method is verified in an industrial robot platform, and the experimental results show that the proposed method has smaller errors than the weighted least squares (WLS) method and achieves similar accuracy to the semiparametric model (SPM) but has a better generalization ability.

References

1.
Pham
,
H.
, and
Pham
,
Q. C.
,
2018
, “
A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
645
659
.10.1109/TRO.2018.2819195
2.
Wu
,
S.
,
Kazerounian
,
K.
,
Gan
,
Z.
, and
Sun
,
Y.
,
2013
, “
A Simulation Platform for Optimal Selection of Robotic Belt Grinding System Parameters
,”
Int. J. Adv. Manuf. Technol.
,
64
(
1–4
), pp.
447
458
.10.1007/s00170-012-4030-6
3.
Haddadin
,
S.
,
De Luca
,
A.
, and
Albu-Schaffer
,
A.
,
2017
, “
Robot Collisions: A Survey on Detection, Isolation, and Identification
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1292
1312
.10.1109/TRO.2017.2723903
4.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.10.1115/1.4011045
5.
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2010
, “
An Overview of Dynamic Parameter Identification of Robots
,”
Rob. Comput. Integr. Manuf.
,
26
(
5
), pp.
414
419
.10.1016/j.rcim.2010.03.013
6.
Jin
,
J.
, and
Gans
,
N.
,
2015
, “
Parameter Identification for Industrial Robots With a Fast and Robust Trajectory Design Approach
,”
Rob. Comput. Integr. Manuf.
,
31
(
1
), pp.
21
29
.10.1016/j.rcim.2014.06.004
7.
Han
,
Y.
,
Wu
,
J.
,
Liu
,
C.
, and
Xiong
,
Z.
,
2020
, “
An Iterative Approach for Accurate Dynamic Model Identification of Industrial Robots
,”
IEEE Trans. Rob.
,
36
(
5
), pp.
1577
1594
.10.1109/TRO.2020.2990368
8.
Ni
,
H. P.
,
Zhang
,
C. R.
,
Hu
,
T. L.
,
Wang
,
T.
,
Chen
,
Q. Z.
, and
Chen
,
C.
,
2019
, “
A Dynamic Parameter Identification Method of Industrial Robots Considering Joint Elasticity
,”
Int. J. Adv. Rob. Syst.
,
16
(
1
), epub.10.1177/1729881418825217
9.
Ha
,
I. J.
,
Ko
,
M. S.
, and
Kwon
,
S. K.
,
1989
, “
An Efficient Estimation Algorithm for the Model Parameters of Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
386
394
.10.1109/70.34777
10.
Janot
,
A.
,
Vandanjon
,
P. O.
, and
Gautier
,
M.
,
2014
, “
A Generic Instrumental Variable Approach for Industrial Robot Identification
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
132
145
.10.1109/TCST.2013.2246163
11.
Brunot
,
M.
,
Janot
,
A.
,
Young
,
P. C.
, and
Carrillo
,
F.
,
2018
, “
An Improved Instrumental Variable Method for Industrial Robot Model Identification
,”
Control Eng. Pract.
,
74
, pp.
107
117
.10.1016/j.conengprac.2018.02.010
12.
Gautier
,
M.
,
Janot
,
A.
, and
Vandanjon
,
P. O.
,
2013
, “
A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
428
444
.10.1109/TCST.2012.2185697
13.
Yang
,
C.
,
Jiang
,
Y.
,
He
,
W.
,
Na
,
J.
,
Li
,
Z.
, and
Xu
,
B.
,
2018
, “
Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8112
8123
.10.1109/TIE.2018.2803773
14.
He
,
W.
,
Ge
,
W.
,
Li
,
Y.
,
Liu
,
Y. J.
,
Yang
,
C.
, and
Sun
,
C.
,
2017
, “
Model Identification and Control Design for a Humanoid Robot
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
1
), pp.
45
57
.10.1109/TSMC.2016.2557227
15.
Bingül
,
Z.
, and
Karahan
,
O.
,
2011
, “
Dynamic Identification of Staubli RX-60 Robot Using PSO and LS Methods
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4136
4149
.10.1016/j.eswa.2010.09.076
16.
Zakharov
,
A.
, and
Halasz
,
S.
,
1999
, “
Genetic Algorithms Based Identification Method for a Robot Arm
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
(
ISIE '99
), Vol.
3
, Bled, Slovenia, July 12–16, Cat. No. 99TH8465, pp.
1014
1019
.10.1109/ISIE.1999.796763
17.
Juang
,
C. F.
, and
Lo
,
C.
,
2007
, “
Fuzzy Systems Design by Clustering-Aided Ant Colony Optimization for Plant Control
,”
Int. J. Gen. Syst.
,
36
(
6
), pp.
623
641
.10.1080/03081070701288952
18.
Wu
,
C.-J.
, and
Huang
,
C.-H.
,
1996
, “
Back-Propagation Neural Networks for Identification and Control of a Direct Drive Robot
,”
J. Intell. Rob. Syst.
,
16
(
1
), pp.
45
64
.10.1007/BF00309655
19.
Hu
,
J.
, and
Xiong
,
R.
,
2018
, “
Contact Force Estimation for Robot Manipulator Using Semiparametric Model and Disturbance Kalman Filter
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3365
3375
.10.1109/TIE.2017.2748056
20.
Jiang
,
Z. H.
,
Ishida
,
T.
, and
Sunawada
,
M.
,
2006
, “
Neural Network Aided Dynamic Parameter Identification of Robot Manipulators
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
, Taipei, China, Oct. 8–11, pp.
3298
3303
.10.1109/ICSMC.2006.384627
21.
Wang
,
S.
,
Shao
,
X.
,
Yang
,
L.
, and
Liu
,
N.
,
2020
, “
Deep Learning Aided Dynamic Parameter Identification of 6-DOF Robot Manipulators
,”
IEEE Access
,
8
, pp.
138102
138116
.10.1109/ACCESS.2020.3012196
22.
Marques
,
F.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.10.1007/s11071-016-2999-3
23.
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Multibody Dynamics Simulation of Planar Linkages With Dahl Friction
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
321
347
.10.1007/s11044-007-9047-5
24.
Gautier
,
M.
, and
Khalil
,
W.
,
1990
, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
368
373
.10.1109/70.56655
25.
Swevers
,
J.
,
Verdonck
,
W.
, and
De Schutter
,
J.
,
2007
, “
Dynamic Model Identification for Industrial Robots
,”
IEEE Control Syst.
,
27
(
5
), pp.
58
71
.10.1109/MCS.2007.904659
26.
Bittencourt
,
A. C.
, and
Gunnarsson
,
S.
,
2012
, “
Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
5
), p.
051013
.10.1115/1.4006589
27.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” Proceedings of the International Conference on Learning Representation, San Deigo, CA, May, pp.
1
15
.
28.
Sousa
,
C. D.
, and
Cortesão
,
R.
,
2014
, “
Physical Feasibility of Robot Base Inertial Parameter Identification: A Linear Matrix Inequality Approach
,”
Int. J. Rob. Res.
,
33
(
6
), pp.
931
944
.10.1177/0278364913514870
29.
Gautier
,
M.
, and
Poignet
,
P.
,
2001
, “
Extended Kalman Filtering and Weighted Least Squares Dynamic Identification of Robot
,”
Control Eng. Pract.
,
9
(
12
), pp.
1361
1372
.10.1016/S0967-0661(01)00105-8
You do not currently have access to this content.