We present a Galerkin projection technique by which finite-dimensional ordinary differential equation (ODE) approximations for delay differential equations (DDEs) can be obtained in a straightforward fashion. The technique requires neither the system to be near a bifurcation point, nor the delayed terms to have any specific restrictive form, or even the delay, nonlinearities, and/or forcing to be small. We show through several numerical examples that the systems of ODEs obtained using this procedure can accurately capture the dynamics of the DDEs under study, and that the accuracy of solutions increases with increasing numbers of shape functions used in the Galerkin projection. Examples studied here include a linear constant coefficient DDE as well as forced nonlinear DDEs with one or more delays and possibly nonlinear delayed terms. Parameter studies, with associated bifurcation diagrams, show that the qualitative dynamics of the DDEs can be captured satisfactorily with a modest number of shape functions in the Galerkin projection.

1.
Stépán
,
G.
, 1997, “
Delay Differential Equation Models for Machine Tool Chatter
,” in
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
, New York,
165
191
.
2.
Olgac
,
N.
,
Elmali
,
H.
,
Hosek
,
M.
, and
Renzulli
,
M.
, 1997, “
Active Vibration Control of Distributed Systems Using Delayed Resonator With Acceleration Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
380
389
.
3.
Santos
,
O.
, and
Mondié
,
S.
, 2000, “
Control Laws Involving Distributed Time Delays: Robustness of Implementation
,”
Proc. of Amer. Control Conf.
, Chicago,
IEEE
, New York, pp.
2479
2480
.
4.
Insperger
,
T.
, and
Stépán
,
G.
, 2000, “
Remote Control of Periodic Robot Motion
,”
Proc. of 13th Symp. on Theory and Practice of Robots and Manipulators
, Zakopane,
Springer, Wien
, pp.
197
203
.
5.
Batzel
,
J. J.
, and
Tran
,
H. T.
, 2000, “
Stability of the Human Respiratory Control System I: Analysis of a Two-Dimensional Delay State-Space Model
,”
J. Math. Biol.
0303-6812,
41
, pp.
45
79
.
6.
Szydlowski
,
M.
, and
Krawiec
,
A.
, 2001, “
The Kaldor-Kalecki Model of Business Cycle as a Two-Dimensional Dynamical System
,”
J. Nonlinear Math. Phys.
1402-9251,
8
, pp.
266
271
.
7.
Kalmár-Nagy
,
T.
,
Stépán
,
G.
, and
Moon
,
F. C.
, 2001, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
121
142
.
8.
Epstein
,
I. R.
, 1992, “
Delay Effects and Differential Delay Equations in Chemical Kinetics
,”
Int. Rev. Phys. Chem.
0144-235X,
11
(
1
), pp.
135
160
.
9.
Roussel
,
M. R.
, 1998, “
Approximate State-Space Manifolds Which Attract Solutions of Systems of Delay-Differential Equations
,”
J. Chem. Phys.
0021-9606,
109
(
19
), pp.
8154
8160
.
10.
Engelborghs
,
K.
, 2000, “
DDE-BIFTOOL: A Matlab Package for Bifurcation Analysis of Delay Differential Equations
,” Tech. Rep. TW-305, Department of Computer Science, K. U. Leuven, Leuven, Belgium. Available from http://www.cs.kuleuven.ac.be/koen/delay/ddebiftool.shtmlhttp://www.cs.kuleuven.ac.be/koen/delay/ddebiftool.shtml
11.
Engelborghs
,
K.
, 2000, “
Numerical Bifurcation Analysis of Delay Differential Equations
,” Ph.D. Dissertation, Dept. of Computer Science, K. U. Leuven, Leuven, Belgium.
12.
Bellen
,
A.
, and
Zennaro
,
M.
, 1985, “
Numerical Solution of Delay Differential Equations by Uniform Corrections to an Implicit Runge-Kutta Method
,”
Numer. Math.
0029-599X,
47
, pp.
301
316
.
13.
Cryer
,
C. W.
, 1974, “
Highly Stable Multistep Method for Retarded Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
11
(
4
), pp.
788
797
.
14.
Hale
,
J. K.
, and
Lunel
,
S. V.
, 1993,
Introduction to Functional Differential Equations
,
Springer-Verlag
, New York.
15.
Diekmann
,
O.
,
Gils
,
S. V.
,
Lunel
,
S. V.
, and
Walther
,
H.
, 1995,
Delay Equations: Functional-, Complex-, and Nonlinear Analysis
,
Springer-Verlag
, New York.
16.
Macdonald
,
N.
, 1995, “
Harmonic Balance in Delay-Differential Equations
,”
J. Sound Vib.
0022-460X,
186
(
4
), pp.
649
656
.
17.
Gronbech-Jensen
,
N.
,
Blackburn
,
J. A.
,
Huberman
,
B. O.
, and
Smith
,
H. J. T.
, 1992, “
Josephson Junction With Delayed Feedback
,”
Phys. Lett. A
0375-9601,
172
, pp.
131
140
.
18.
Saupe
,
D.
, 1983, “
Global Bifurcation of Periodic Solutions to Some Autonomous Differential Delay Equations
,”
Appl. Math. Comput.
0096-3003,
13
, pp.
185
211
.
19.
Layton
,
W.
, 1986, “
The Galerkin Method for the Approximation of Almost Periodic Solutions of Functional Differential Equations
,”
Funkcial. Ekvac.
,
29
, pp.
19
29
.
20.
Nayfeh
,
A. H.
,
Chin
,
C.
, and
Pratt
,
J.
, 1997, “
Applications of Perturbation Methods to Tool Chatter Dynamics
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
, New York,
193
213
.
21.
Plaut
,
R. H.
, and
Hseih
,
J. C.
, 1987, “
Nonlinear Structural Vibrations Involving a Time Delay in Damping
,”
J. Sound Vib.
0022-460X,
117
(
3
), pp.
497
510
.
22.
Hu
,
H. Y.
,
Dowell
,
E. H.
, and
Virgin
,
L. N.
, 1998, “
Resonances of a Harmonically Forced Duffing Oscillator With Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
15
, pp.
311
327
.
23.
Maccari
,
A.
, 2001, “
The response of a parametrically excited van der Pol oscillator to a time delay state feedback
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
105
119
.
24.
Campbell
,
S. A.
,
Bélair
,
J.
,
Ohira
,
T.
, and
Milton
,
J.
, 1995, “
Complex Dynamics and Multi-Stability in a Damped Harmonic Oscillator With Delayed Negative Feedback
,”
Chaos
1054-1500,
5
(
4
), pp.
640
645
.
25.
Fofana
,
M. S.
, 2001, “
A Unified Framework for the Study of Periodic Solutions of Nonlinear Delay Differential Equations
,”
Proc. of DETC’01, ASME 2001 Des. Engrg. Tech. Conf., and Comput. Inform. Engrg. Conf.
,
Pittsburgh
, ASME, New York, pp.
1
-
20
.
26.
Xu
,
J.
, and
Lu
,
Q. S.
, 1999, “
Hopf bifurcation of time-delay Lienard equations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
9
(
5
), pp.
939
951
.
27.
Wang
,
Z. H.
, and
Hu
,
H. Y.
, 2001, “
Dimensional Reduction for Nonlinear Time-Delayed Systems Composed of Stiff and Soft Substructures
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
317
331
.
28.
Faria
,
T.
, and
Magalhaes
,
L. T.
, 1995, “
Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity
,”
J. Diff. Eqns.
0022-0396,
122
, pp.
201
224
.
29.
Faria
,
T.
, and
Magalhaes
,
L. T.
, 1995, “
Normal Forms for Retarded Functional Differential Equations With Parameters and Applications to Hopf Bifurcation
,”
J. Diff. Eqns.
0022-0396,
122
, pp.
181
200
.
30.
Faria
,
T.
, 1997, “
Normal Forms for Periodic Retarded Functional Differential Equations
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
127
, pp.
21
46
.
31.
Das
,
S. L.
, and
Chatterjee
,
A.
, 2002, “
Multiple Scales Without Center Manifold Reductions for Delay Differential Equations Near Hopf Bifurcations
,”
Nonlinear Dyn.
0924-090X,
30
, pp.
323
335
.
32.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
25
34
.
33.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2003, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
220
225
.
34.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
503
518
.
35.
Wahi
,
P.
, and
Chatterjee
,
A.
, 2002, “
On the Characteristic Roots of Linear Constant-Coefficient DDE’s
,”
Proc. of 47th Congress of Indian Society of Theoretical and Applied Mechanics
, Dec 23–26, Guwahati, pp.
234
241
.
36.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2004, “
Computing the Characteristic Roots for Delay Differential Equations
,”
IMA Journal of Numerical Analysis
,
24
, pp.
1
-
19
.
37.
Engelborghs
,
K.
, and
Roose
,
D.
, 2002, “
On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
40
(
2
), pp.
629
650
.
38.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
, 2003, “
Analysis of a system of linear delay differential equations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
215
223
.
39.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems
,
Longman Group
, UK.
40.
Sipahi
,
R.
, and
Olgac
,
N.
, 2003, “
Direct Method Implementation for the Stability Analysis of Multiple Time Delayed Systems
,”
Proc. of 2003 IEEE Conf. on Control Appl.
IEEE
, New York, Vol.
1
, pp.
943
948
.
41.
Wang
,
Z.
, and
Hu
,
H.
, 1999, “
Robust Stability Test for Dynamic Systems With Short Delays by Using Padé Approximation
,”
Nonlinear Dyn.
0924-090X,
18
, pp.
275
287
.
42.
Hassard
,
B. D.
, 1997, “
Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems
,”
J. Diff. Eqns.
0022-0396,
136
, pp.
222
235
.
You do not currently have access to this content.