In this work, a microtubular cell consisting of a thin Ce0.9Gd0.1O1.95 (GDC) electrolyte (thickness: below 10μm) on a support NiO/GDC anode (1.8 mm outer diameter, 200μm wall thickness) with a La0.6Sr0.4Co0.2Fe0.8O3δ/GDC functional cathode has been developed for intermediate/low temperature operation. The functional cathode was prepared by in situ infiltrating the electrochemically catalytic nano-Ag particles into the as-established 20μm thick cathode. The as-proposed Ag-impregnation route ensures a very homogeneous particle dispersion and a good adhesion of Ag to the ceramic matrices. The cells were successfully operated to produce the maximum power densities of 0.41Wcm2 (1.27Acm2, 0.32 V), 0.83Wcm2 (2.23Acm2, 0.37 V), and 1.05Wcm2 (2.39Acm2, 0.44 V) at 450°C, 500°C, and 550°C, respectively.

1.
Steel
,
B. C. H.
, 1995, “
Interfacial Reactions Associated With Ceramic Ion Transport Membranes
,”
Solid State Ionics
0167-2738,
75
, pp.
157
165
.
2.
Murray
,
E. P.
,
Sever
,
M. J.
, and
Barnett
,
S. A.
, 2002, “
Electrochemical Performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 Composite Cathodes
,”
Solid State Ionics
0167-2738,
148
, pp.
27
34
.
3.
Visco
,
S. J.
,
Jacobson
,
C.
, and
De Jonhe
,
L. C.
, 1997,
Solid Oxide Fuel Cells V
(
The Electrochemical Society Proceedings Series
),
U.
Stimming
,
S. C.
Singhal
,
H.
Tagawa
, and
W.
Lehnert
, eds.,
The Electrochemical Society
,
Pennington, NJ
, p.
710
.
4.
Doshi
,
R.
,
Richards
,
V. L.
,
Carter
,
J. D.
,
Wang
,
X.
, and
Krumpelt
,
M.
, 1999, “
Development of Solid-Oxide Fuel Cells That Operate at 500°C
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
1273
1278
.
5.
Leng
,
Y. J.
,
Chan
,
S. H.
,
Jiang
,
S. P.
, and
Khor
,
K. A.
, 2004, “
Low-Temperature SOFC With Thin Film GDC Electrolyte Prepared in situ by Solid-State Reaction
,”
Solid State Ionics
0167-2738,
170
, pp.
9
15
.
6.
Suzuki
,
T.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2006, “
Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A925
A928
.
7.
Kilbride
,
I. P.
, 1996, “
Preparation and Properties of Small Diameter Tubular Solid Oxide Fuel Cells For Rapid Start-Up
,”
J. Power Sources
0378-7753,
61
, pp.
167
171
.
8.
Kendall
,
K.
, and
Palin
,
M.
, 1998, “
A Small Solid Oxide Fuel Cell Demonstrator for Microelectronic Applications
,”
J. Power Sources
0378-7753,
71
, pp.
268
270
.
9.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
145
, pp.
428
434
.
10.
Liu
,
Y.
,
Mori
,
M.
,
Funahashi
,
Y.
,
Fujishiro
,
Y.
, and
Hirano
,
A.
, 2007, “
Development of Micro-Tubular SOFCs With an Improved Performance via Nano-Ag Impregnation for Intermediate Temperature Operation
,”
Electrochem. Commun.
1388-2481,
9
, pp.
1918
1923
.
11.
Riess
,
I.
,
Gödickemeier
,
M.
, and
Gauckler
,
L. J.
, 1996, “
Characterization of Solid Oxide Fuel Cells Based on Solid Electrolytes or Mixed Ionic Electronic Conductors
,”
Solid State Ionics
0167-2738,
90
, pp.
91
104
.
12.
Liu
,
Y.
,
Hashimoto
,
S.
,
Nishino
,
H.
,
Takei
,
K.
,
Mori
,
M.
, and
Funahashi
,
Y.
, 2007, “
Development of High-Performance Current Collectors via Novel Metal Coating for Micro-Tubular Cells
,”
ECS Trans.
1938-5862,
7
, p.
927
.
13.
Huang
,
K.
, 2004, “
Gas-Diffusion Process in a Tubular Cathode Substrate of an SOFC
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A716
A719
.
You do not currently have access to this content.