In this work, a microtubular cell consisting of a thin (GDC) electrolyte (thickness: below ) on a support NiO/GDC anode (1.8 mm outer diameter, wall thickness) with a functional cathode has been developed for intermediate/low temperature operation. The functional cathode was prepared by in situ infiltrating the electrochemically catalytic nano-Ag particles into the as-established thick cathode. The as-proposed Ag-impregnation route ensures a very homogeneous particle dispersion and a good adhesion of Ag to the ceramic matrices. The cells were successfully operated to produce the maximum power densities of (, 0.32 V), (, 0.37 V), and (, 0.44 V) at , , and , respectively.
Issue Section:
Research Papers
Keywords:
solid oxide fuel cells,
gadolinium doped ceria,
La0.6 Sr0.4 Co0.2 Fe0.8 O3−δ,
Ag-impregnation,
cell performance,
adhesion,
catalysis,
ceramics,
cerium compounds,
cobalt compounds,
electrochemical electrodes,
electrochemistry,
electrolytes,
lanthanum compounds,
nanocomposites,
nanoparticles,
silver,
solid oxide fuel cells,
strontium compounds
1.
Steel
, B. C. H.
, 1995, “Interfacial Reactions Associated With Ceramic Ion Transport Membranes
,” Solid State Ionics
0167-2738, 75
, pp. 157
–165
.2.
Murray
, E. P.
, Sever
, M. J.
, and Barnett
, S. A.
, 2002, “Electrochemical Performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 Composite Cathodes
,” Solid State Ionics
0167-2738, 148
, pp. 27
–34
.3.
Visco
, S. J.
, Jacobson
, C.
, and De Jonhe
, L. C.
, 1997, Solid Oxide Fuel Cells V
(The Electrochemical Society Proceedings Series
), U.
Stimming
, S. C.
Singhal
, H.
Tagawa
, and W.
Lehnert
, eds., The Electrochemical Society
, Pennington, NJ
, p. 710
.4.
Doshi
, R.
, Richards
, V. L.
, Carter
, J. D.
, Wang
, X.
, and Krumpelt
, M.
, 1999, “Development of Solid-Oxide Fuel Cells That Operate at 500°C
,” J. Electrochem. Soc.
0013-4651, 146
, pp. 1273
–1278
.5.
Leng
, Y. J.
, Chan
, S. H.
, Jiang
, S. P.
, and Khor
, K. A.
, 2004, “Low-Temperature SOFC With Thin Film GDC Electrolyte Prepared in situ by Solid-State Reaction
,” Solid State Ionics
0167-2738, 170
, pp. 9
–15
.6.
Suzuki
, T.
, Yamaguchi
, T.
, Fujishiro
, Y.
, and Awano
, M.
, 2006, “Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC
,” J. Electrochem. Soc.
0013-4651, 153
, pp. A925
–A928
.7.
Kilbride
, I. P.
, 1996, “Preparation and Properties of Small Diameter Tubular Solid Oxide Fuel Cells For Rapid Start-Up
,” J. Power Sources
0378-7753, 61
, pp. 167
–171
.8.
Kendall
, K.
, and Palin
, M.
, 1998, “A Small Solid Oxide Fuel Cell Demonstrator for Microelectronic Applications
,” J. Power Sources
0378-7753, 71
, pp. 268
–270
.9.
Sammes
, N. M.
, Du
, Y.
, and Bove
, R.
, 2005, “Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,” J. Power Sources
0378-7753, 145
, pp. 428
–434
.10.
Liu
, Y.
, Mori
, M.
, Funahashi
, Y.
, Fujishiro
, Y.
, and Hirano
, A.
, 2007, “Development of Micro-Tubular SOFCs With an Improved Performance via Nano-Ag Impregnation for Intermediate Temperature Operation
,” Electrochem. Commun.
1388-2481, 9
, pp. 1918
–1923
.11.
Riess
, I.
, Gödickemeier
, M.
, and Gauckler
, L. J.
, 1996, “Characterization of Solid Oxide Fuel Cells Based on Solid Electrolytes or Mixed Ionic Electronic Conductors
,” Solid State Ionics
0167-2738, 90
, pp. 91
–104
.12.
Liu
, Y.
, Hashimoto
, S.
, Nishino
, H.
, Takei
, K.
, Mori
, M.
, and Funahashi
, Y.
, 2007, “Development of High-Performance Current Collectors via Novel Metal Coating for Micro-Tubular Cells
,” ECS Trans.
1938-5862, 7
, p. 927
.13.
Huang
, K.
, 2004, “Gas-Diffusion Process in a Tubular Cathode Substrate of an SOFC
,” J. Electrochem. Soc.
0013-4651, 151
, pp. A716
–A719
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.