The purpose of the first part of this study was to compare four different temperature measuring methods. The application of these tools for possible temperature monitoring or calibration of monitors of microtubular solid oxide fuel cells (MT-SOFCs) is explored. It was found that a thermographic camera is very useful to visualize the temperature gradient on the outside of a cell, while an electrochemical impedance spectroscopy method was useful for estimating the core temperature of a test cell. A standard thermocouple was also used in combination with the previous two methods. Furthermore, an inexpensive laser guided thermometer was also tested for MT-SOFC temperature measurement. This initial study has opened up a range of questions not only about the effect of the experimental apparatus on the measurement results but also about the radial temperature distribution through a MT-SOFC in a working mode. Both these topics will be further investigated in part II of this study through a computational fluid dynamics study. This should provide additional interesting information about any differences between testing single cells and those within a bundle of cells. The discussed results are expected to be mainly temperature related, which should have direct consequences on power output and optimized gas inlet temperatures.

1.
Winkler
,
W.
, and
Lorenz
,
H.
, 2002, “
Design Studies of Mobile Applications With SOFC-Heat Engine Modules
,”
J. Power Sources
0378-7753,
106
(
1–2
), pp.
338
343
.
2.
Kendall
,
K.
, 2009, “
Progress in Microtubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
7
(
1
), pp.
1
9
.
3.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
, 2009, “
Review of the Micro-Tubular Solid Oxide Fuel Cell: Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
0378-7753,
193
(
2
), pp.
387
399
.
4.
Kendall
,
K.
, 2005, “
Progress in Solid Oxide Fuel Cell Materials
,”
Int. Mater. Rev.
0950-6608,
50
, pp.
257
264
.
5.
Sammes
,
N. M.
,
Bove
,
R.
, and
Pusz
,
J.
, 2006, “
Fuel Cell Technology: Reaching Toward Commercialization
,”
The Case of the Micro-Tubulal Solid Oxide Fuel Cell
(Series in Engineering Materials and Processes), Vol.
XIV
,
N.
Sammes
, ed.
6.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2008, “
New Stack Design of Micro-Tubular SOFCs for Portable Power Sources
,”
Fuel Cells
0532-7822,
8
(
6
), pp.
381
384
.
7.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2009, “
Effects of Operating Conditions on the Performance of a Micro-Tubular Solid Oxide Fuel Cell (SOFC)
,”
J. Power Sources
0378-7753,
192
(
2
), pp.
414
422
.
8.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
, 2008, “
Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
155
(
11
), pp.
B1117
B1127
.
9.
Bujalski
,
W.
,
Dikwal
,
C. M.
, and
Kendall
,
K.
, 2007, “
Cycling of Three Solid Oxide Fuel Cell Types
,”
J. Power Sources
0378-7753,
171
(
1
), pp.
96
100
.
10.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
243
246
.
11.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
, 2008,
Second International Conference on Thermal Issues in Emerging Technologies
, ThETA 2008, pp.
85
96
.
12.
Lawlor
,
V.
,
Hochenauer
,
C.
,
Buchinger
,
G.
,
Griesser
,
S.
,
Olabi
,
A.
, and
Meissner
,
D.
, 2008, “
Numerical Simulation and Experimental Validation to Design an Optimised Micro-Tubular SOFC Reactor
,”
Forschungsforum Der Österreichischen Fachhochschulen
, Vol.
2
,
Upper Austria University of Applied Science
,
Wels, Austria
.
13.
Du
,
Y.
,
Finnerty
,
C.
, and
Jiang
,
J.
, 2008, “
Thermal Stability of Portable Microtubular SOFCs and Stacks
,”
J. Electrochem. Soc.
0013-4651,
155
(
9
), pp.
B972
B977
.
14.
Brett
,
D. J. L.
,
Aguiar
,
P.
,
Clague
,
R.
,
Marquis
,
A. J.
,
Schöttl
,
S.
,
Simpson
,
R.
, and
Brandon
,
N. P.
, 2007, “
Application of Infrared Thermal Imaging to the Study of Pellet Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
166
(
1
), pp.
112
119
.
15.
Pomfret
,
M. B.
,
Steinhurst
,
D. A.
,
Kidwell
,
D. A.
, and
Owrutsky
,
J. C.
, 2010, “
Thermal Imaging of Solid Oxide Fuel Cell Anode Processes
,”
J. Power Sources
0378-7753,
195
(
1
), pp.
257
262
.
16.
Hashimoto
,
S.
,
Nishino
,
H.
,
Liu
,
Y.
,
Asano
,
K.
,
Mori
,
M.
,
Funahashi
,
Y.
, and
Fujishiro
,
Y.
, 2008, “
The Electrochemical Cell Temperature Estimation of Micro-Tubular SOFCs During the Power Generation
,”
J. Power Sources
0378-7753,
181
(
2
), pp.
244
250
.
17.
Hashimoto
,
S.
,
Nishino
,
H.
,
Liu
,
Y.
,
Asano
,
K.
,
Mori
,
M.
,
Funahashi
,
Y.
, and
Fujishiro
,
Y.
, 2008, “
Development of Evaluation Technologies for Microtubular SOFCs Under Pressurized Conditions
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
(
3
), p.
031208
.
18.
Sammes
,
N. M.
, and
Du
,
Y.
, 2007, “
Fabrication and Characterization of Tubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
4
(
2
), pp.
89
102
.
19.
Buchinger
,
G.
,
Kraut
,
J.
,
Raab
,
T.
,
Griesser
,
S.
,
Lawlor
,
V.
,
Haiber
,
J.
,
Hiesgen
,
R.
,
Sitte
,
W.
, and
Meissner
,
D.
, 2007,
Operating Micro-Tubular SOFCs Containing Nickel Based Anodes With Blends of Methane and Hydrogen
,
Upper Austria University of Applied Science
,
Wels, Austria
, pp.
450
455
.
20.
Suzuki
,
T.
,
Yamaguchi
,
T.
,
Fijishiro
,
Y.
, and
Awano
,
M.
, 2006, “
Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC
,”
J. Electrochem. Soc.
0013-4651,
153
(
5
), pp.
A925
A928
.
21.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Fabrication and Characterization of Components for Cube Shaped Micro Tubular SOFC Bundle
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
731
736
.
22.
Campana
,
R.
,
Merino
,
R. I.
,
Larrea
,
A.
,
Villarreal
,
I.
, and
Orera
,
V. M.
, 2009, “
Fabrication, Electrochemical Characterization and Thermal Cycling of Anode Supported Microtubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
192
(
1
), pp.
120
125
.
23.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Hasan
,
Z.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2008, “
Fabrication of Needle-Type Micro SOFCs for Micro Power Devices
,”
Electrochem. Commun.
1388-2481,
10
(
10
), pp.
1563
1566
.
24.
Kanamura
,
K.
,
Yoshioka
,
S.
, and
Takehara
,
Z. -I.
, 1991, “
Temperature Distribution in Tubular Solid Oxide Fuel Cell
,”
Bull. Chem. Soc. Jpn.
0009-2673,
64
(
6
), pp.
1828
1834
.
25.
Fischer
,
K.
, and
Seume
,
J. R.
, 2009, “
Location and Magnitude of Heat Sources in Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
6
(
1
), p.
011002
.
You do not currently have access to this content.