Abstract

The presence of liquid water at the cathode of proton exchange membrane fuel cell hinders the reactant supply to the electrode and is known as electrode flooding. The flooding at the cathode due to the presence of two-phase flow of water is one of the major performance limiting conditions. A pseudo-two-dimensional analytical model is developed to predict the inception of two-phase flow along the length of the cathode channel. The diffusion of the water is considered to take place only across the gas diffusion layer (GDL). The current density corresponding to the inception of two-phase flow, called the threshold current density, is found to be a function of the channel length and height, GDL thickness, velocity, and relative humidity of the air at the inlet and cell temperature. Thus, for given design and operating conditions, the analytical model is capable of predicting the inception of two-phase flow, and therefore a flooding condition can be avoided in the first place.

1.
Bernardi
,
D. M.
, 1990, “
Water-Balance Calculations for Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
137
(
11
), pp.
3344
3350
.
2.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
3.
Gurau
,
V.
,
Barbir
,
F.
, and
Liu
,
H.
, 2000, “
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
2468
2477
.
4.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
38
45
.
5.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical Modeling of Proton Exchange Fuel Cell
,”
J. Power Sources
0378-7753,
102
, pp.
82
96
.
6.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
7.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Zee
,
J. W. V.
, 2000, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
8.
Weber
,
A. Z.
, and
Newman
,
J.
, 2006, “
Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
12
), pp.
A2205
A2214
.
9.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
, 2006, “
Pressure Drop and Flow Distribution in Multiple Parallel-Channel Configurations Used in Proton-Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
157
(
1
), pp.
358
367
.
10.
Ganesh Mohan
,
B.
,
Rao
,
P.
,
Das
,
S. K.
,
Pandiyan
,
S.
,
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K. S.
, 2004, “
Analysis of Flow Maldistribution of Fuel and Oxidant in a PEMFC
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
, pp.
262
270
.
11.
Bassiouny
,
M. K.
, and
Martin
,
H.
, 1984, “
Flow Distribution and Pressure Drop in Plate Heat Exchanger-I
,”
Chem. Eng. Sci.
0009-2509,
39
, pp.
693
700
.
12.
Bansode
,
A. S.
,
Das
,
S. K.
, and
Sundararajan
,
T.
, 2010, “
Experimental and Computational Studies on Effects of Flow Distributor Upon the Performance of PEM Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
7
(
5
), p.
051014
.
You do not currently have access to this content.