Abstract

Over the last several decades, cooling technologies have been developed to address the growing thermal challenges associated with high-powered electronics. However, within the next several years, the heat generated by these devices is predicted to exceed 1 kW/cm2, and traditional methods, such as air cooling, are limited in their capacities to dissipate such high heat fluxes. In contrast, two-phase cooling methods, such as microdroplet evaporation, are very promising due to the large latent heat of vaporization associated with the phase change process. Previous studies have shown that nonaxisymmetric droplets have different evaporation characteristics than spherical droplets. The solid–liquid and liquid–vapor interfacial areas, volume, contact angle, and thickness of a droplet confined atop a micropillar are the primary parameters that influence evaporative heat transport. These parameters have a strong influence on both the conduction and diffusion resistance during the evaporation process. For example, a droplet with a higher liquid–vapor interfacial area will favorably increase heat transfer. Increased droplet thickness, on the other hand, has a detrimental influence on the evaporation rate. The dimensions of these droplets will vary in response to changes in each of the aforementioned parameters. Lowering the droplet thickness can be achieved by decreasing the liquid volume while maintaining a constant solid–liquid area. However, if the solid–liquid area and volume vary simultaneously, the average droplet thickness may increase, decrease, or remain constant. Furthermore, changes in the shape of the droplet modify the local equilibrium contact angle of the droplet for different azimuthal angles. As a result, the optimal combination of these parameters must be identified to maximize the heat transfer performance of an evaporating microdroplet. These droplet parameters can be manipulated by selecting different micropillar cross sections. In this work, we develop a shape optimization tool using the particle swarm optimization algorithm to maximize evaporation from a droplet confined atop a micropillar. The tool is used to optimize the shape of a nonaxisymmetric droplet. Compared to droplets atop circular and regular equilateral triangular micropillar structures, we find that droplets confined on pseudo-triangular micropillar structures have 23.7% and 5.7% higher heat transfer coefficients, respectively. The results of this work will advance the design of microstructures that support droplets with maximum heat transfer performance.

References

1.
Wang
,
S.
,
Yin
,
Y.
,
Hu
,
C.
, and
Rezai
,
P.
,
2018
, “
3D Integrated Circuit Cooling With Microfluidics
,”
Micromachines
,
9
(
6
), p.
287
.10.3390/mi9060287
2.
Bar-Cohen
,
A.
,
Robinson
,
F. L.
, and
Deisenroth
,
D. C.
,
2018
, “
Challenges and Opportunities in gen3 Embedded Cooling With High-Quality Microgap Flow
,” 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (
ICEP-IAAC)
,
IEEE
, Mie, Japan, Apr. 17–21, pp.
K
1
. 10.23919/ICEP.2018.8374353
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VlSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
4.
Nahar
,
M. M.
,
Ma
,
B.
,
Guye
,
K.
,
Chau
,
Q. H.
,
Padilla
,
J.
,
Iyengar
,
M.
, and
Agonafer
,
D.
,
2021
, “
Microscale Evaporative Cooling Technologies for High Heat Flux Microelectronics Devices: Background and Recent Advances
,”
Appl. Therm. Eng.
,
194
, p.
117109
.10.1016/j.applthermaleng.2021.117109
5.
Guye
,
K.
,
Nahar
,
M. M.
,
Chau
,
Q.
, and
Agonafer
,
D.
,
2021
, “
Design and Optimization Array of Micropillar Structures for Enhanced Evaporative Cooling of High-Powered Electronics
,”
2021 37th Semiconductor Thermal Measurement, Modeling & Management Symposium
(
SEMI-THERM
),
IEEE
, San Jose, CA, Mar. 22–26, pp.
88
94
.https://ieeexplore.ieee.org/abstract/document/9406085
6.
Bodkhe
,
S.
,
Turcot
,
G.
,
Gosselin
,
F. P.
, and
Therriault
,
D.
,
2017
, “
One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures
,”
ACS Appl. Mater. Interfaces
,
9
(
24
), pp.
20833
20842
.10.1021/acsami.7b04095
7.
Sowade
,
E.
,
Blaudeck
,
T.
, and
Baumann
,
R. R.
,
2015
, “
Inkjet Printing of Colloidal Nanospheres: Engineering the Evaporation-Driven Self-Assembly Process to Form Defined Layer Morphologies
,”
Nanoscale Res. Lett.
,
10
(
1
), pp.
1
9
.10.1186/s11671-015-1065-2
8.
Prajapati
,
Y. K.
, and
Bhandari
,
P.
,
2017
, “
Flow Boiling Instabilities in Microchannels and Their Promising Solutions – A Review
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
576
593
.10.1016/j.expthermflusci.2017.07.014
9.
Mandel
,
R.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2017
, “
Thin-Film Evaporation on Microgrooved Heatsinks
,”
Numer. Heat Transfer, Part A: Appl.
,
71
(
2
), pp.
111
127
.10.1080/10407782.2016.1257300
10.
Cheng
,
W.-L.
,
Zhang
,
W.-W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renew. Sustain. Energy Rev.
,
55
, pp.
614
628
.10.1016/j.rser.2015.11.014
11.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
12.
El-Dessouky
,
H. T.
, and
Ettouney
,
H.
,
1999
, “
Multiple-Effect Evaporation Desalination Systems: Thermal Analysis
,”
Desalination
,
125
(
1–3
), pp.
259
276
.10.1016/S0011-9164(99)00147-2
13.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Drop Impact on Heated Walls
,”
Int. J. Heat Mass Transfer
,
106
, pp.
103
126
.10.1016/j.ijheatmasstransfer.2016.10.031
14.
Gatapova
,
E. Y.
,
Shonina
,
A. M.
,
Safonov
,
A. I.
,
Sulyaeva
,
V. S.
, and
Kabov
,
O. A.
,
2018
, “
Evaporation Dynamics of a Sessile Droplet on Glass Surfaces With Fluoropolymer Coatings: Focusing on the Final Stage of Thin Droplet Evaporation
,”
Soft Matter
,
14
(
10
), pp.
1811
1821
.10.1039/C7SM02192E
15.
King
,
C. R.
, Jr
,
2012
,
Thermal Management of Three-Dimensional Integrated Circuits Using Inter-Layer Liquid Cooling
,
Georgia Institute of Technology
, Atlanta, GA.
16.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
17.
Pamula
,
V. K.
, and
Chakrabarty
,
K.
,
2003
, “
Cooling of Integrated Circuits Using Droplet-Based Microfluidics
,”
Proceedings of the 13th ACM Great Lakes Symposium on VLSI
, Washington, DC, Apr. 28–29, pp.
84
87
.10.1145/764808.764831
18.
Prakash
,
J.
, and
Sikarwar
,
B. S.
,
2019
, “
Modeling of Sessile Droplet Evaporation on Engineered Surfaces
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p. 061005.10.1115/1.4043093
19.
Agonafer
,
D.
,
Spector
,
M. S.
, and
Miljkovic
,
N.
,
2021
, “
Materials and Interface Challenges in High Vapor Quality Two-Phase Flow Boiling Research
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
, epub. 10.1109/TCPMT.2021.3085255
20.
Sáenz
,
P.
,
Sefiane
,
K.
,
Kim
,
J.
,
Matar
,
O.
, and
Valluri
,
P.
,
2015
, “
Evaporation of Sessile Drops: A Three-Dimensional Approach
,”
J. Fluid Mech.
,
772
, pp.
705
739
.10.1017/jfm.2015.224
21.
Su
,
F.
,
Ma
,
H.
,
Han
,
X.
,
Chen
,
H.-h.
, and
Tian
,
B.
,
2012
, “
Ultra-High Cooling Rate Utilizing Thin Film Evaporation
,”
Appl. Phys. Lett.
,
101
(
11
), p.
113702
.10.1063/1.4752253
22.
Shan
,
L.
,
Shuai
,
S.
,
Ma
,
B.
,
Du
,
Z.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Numerical Investigation of Shape Effect on Microdroplet Evaporation
,”
ASME J. Electron. Packaging
,
141
(
4
), p. 041008. 10.1115/1.4044962
23.
Ma
,
B.
,
Guye
,
K.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2021
, “
Molecular Dynamics Simulations of Thin-Film Evaporation: The Influence of Interfacial Thermal Resistance on a Graphene-Coated Heated Silicon Substrate
,”
Appl. Therm. Eng.
,
195
, p.
117142
.10.1016/j.applthermaleng.2021.117142
24.
Lee
,
H.
,
Maitra
,
T.
,
Palko
,
J.
,
Kong
,
D.
,
Zhang
,
C.
,
Barako
,
M. T.
,
Won
,
Y.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2018
, “
Enhanced Heat Transfer Using Microporous Copper Inverse Opals
,”
ASME J. Electron. Packaging
,
140
(
2
), p. 020906.10.1115/1.4040088
25.
Lu
,
Z.
,
Wilke
,
K. L.
,
Preston
,
D. J.
,
Kinefuchi
,
I.
,
Chang-Davidson
,
E.
, and
Wang
,
E. N.
,
2017
, “
An Ultrathin Nanoporous Membrane Evaporator
,”
Nano Lett.
,
17
(
10
), pp.
6217
6220
.10.1021/acs.nanolett.7b02889
26.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
27.
Li
,
J.
,
Shan
,
L.
,
Ma
,
B.
,
Jiang
,
X.
,
Solomon
,
A.
,
Iyengar
,
M.
,
Padilla
,
J.
, and
Agonafer
,
D.
,
2019
, “
Investigation of the Confinement Effect on the Evaporation Behavior of a Droplet Pinned on a Micropillar Structure
,”
J. Colloid Interface Sci.
,
555
, pp.
583
594
.10.1016/j.jcis.2019.07.096
28.
Shan
,
L.
,
Li
,
J.
,
Ma
,
B.
,
Jiang
,
X.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Experimental Investigation of Evaporation From Asymmetric Microdroplets Confined on Heated Micropillar Structures
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109889
.10.1016/j.expthermflusci.2019.109889
29.
Shan
,
L.
,
Ma
,
B.
,
Li
,
J.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2019
, “
Investigation of the Evaporation Heat Transfer Mechanism of a Non-Axisymmetric Droplet Confined on a Heated Micropillar Structure
,”
Int. Journal Heat Mass Transfer
,
141
, pp.
191
203
.10.1016/j.ijheatmasstransfer.2019.06.042
30.
Agonafer
,
D.
,
2020
, “
Methods and systems for evaporation of liquid from droplet confined on hollow pillar
,” US Patent Application No. 17/267,539.
31.
Agonafer
,
D.
,
2020
, “
Systems and methods for forming micropillar array
,” US Patent Application No. 17/203,677.
32.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
Springer Science & Business Media
, New York.
33.
Y Ild Iz
,
A. R.
,
2009
, “
A Novel Particle Swarm Optimization Approach for Product Design and Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
40
(
5–6
), p.
617
.10.1007/s00170-008-1453-1
34.
Lyu
,
N.
, and
Saitou
,
K.
,
2005
, “
Topology Optimization of Multicomponent Beam Structure Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
170
183
.10.1115/1.1814671
35.
Eberhart, R. C., and Shi
,
Y.
,
2001
, “
Particle Swarm Optimization: Developments, Applications and Resources
,”
Proceedings of the 2001 Congress on Evolutionary Computation
(
IEEE Cat. No. 01TH8546
), IEEE, Seoul, Korea, May 27–30, pp.
81
86
.10.1109/CEC.2001.934374
36.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
,
IEEE
, Perth, WA, Nov. 27–Dec. 1.10.1109/ICNN.1995.488968
37.
Winkel
,
R.
,
2001
, “
Generalized Bernstein Polynomials and Bézier Curves: An Application of Umbral Calculus to Computer Aided Geometric Design
,”
Adv. Appl. Math.
,
27
(
1
), pp.
51
81
.10.1006/aama.2001.0726
38.
Zielinski
,
K.
,
Peters
,
D.
, and
Laur
,
R.
,
2005
, “
Stopping Criteria for Single-Objective Optimization
,”
The 3rd International Conference on Computational Intelligence
, Robotics and Autonomous Systems, Orchard Hotel, Singapore, Dec. 14–16.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.3511&rep=rep1&type=pdf
39.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3972
3980
.10.1021/la0475270
40.
Hu
,
H.
, and
Larson
,
R. G.
,
2006
, “
Marangoni Effect Reverses Coffee-Ring Depositions
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7090
7094
.10.1021/jp0609232
41.
Semenov
,
S.
,
Starov
,
V. M.
,
Rubio
,
R. G.
, and
Velarde
,
M. G.
,
2012
, “
Computer Simulations of Evaporation of Pinned Sessile Droplets: Influence of Kinetic Effects
,”
Langmuir
,
28
(
43
), pp.
15203
15211
.10.1021/la303916u
42.
Girard
,
F.
,
Antoni
,
M.
, and
Sefiane
,
K.
,
2008
, “
On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops
,”
Langmuir
,
24
(
17
), pp.
9207
9210
.10.1021/la801294x
43.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.10.1103/PhysRevE.71.036313
You do not currently have access to this content.