Abstract

More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in. × 1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance.

References

1.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.10.1016/j.ijthermalsci.2014.06.013
2.
Lawrence, A.,
2020
, “
Rack Density is Rising
,” Uptime Institute Blog, New York.https://journal.uptimeinstitute.com/rack-density-is-rising/
3.
El-Sayed
,
N.
,
Stefanovici
,
I. A.
,
Amvrosiadis
,
G.
,
Hwang
,
A. A.
, and
Schroeder
,
B.
,
2012
, “
Temperature Management in Data Centers: Why Some (Might) Like It Hot
,”
Sigmetrics Perform. Eval. Rev.
,
40
(
1
), pp.
163
174
.10.1145/2318857.2254778
4.
Greenberg
,
S.
,
Mills
,
E.
,
Tschudi
,
B.
,
Rumsey
,
P.
,
Engineers
,
R.
, and
Myatt
,
B.
,
2006
, “
Best Practices for Data Centers: Lessons Learned From Benchmarking 22 Data Centers
,”
ACEEE Summer Study on Energy Efficiency in Buildings
, p.
12
.https://www.researchgate.net/publication/237375801_Best_Practices_for_Data_Centers_Lessons_Learned_from_Benchmarking_22_Data_Centers
5.
Hadad
,
Y.
,
Pejman
,
R.
,
Ramakrishnan
,
B.
,
Chiarot
,
P. R.
, and
Sammakia
,
B. G.
,
2018
, “
Geometric Optimization of an Impinging Cold-Plate With a Trapezoidal Groove Used for Warm Water Cooling
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
673
682
.10.1109/ITHERM.2018.8419540
6.
Copeland
,
D. W.
,
1995
, “Manifold Microchannel Heat Sinks: Analysis and Optimization,” Therm. Sci. Eng., 34, pp. 7–12.
7.
Copeland, D. W., Takahira, H., Nakayama, W., and Bock-Choon, P.,
1995
, “Manifold Microchannel Heat Sinks: Theory and Experiment,”
Therm. Sci. Eng.
, 34, pp. 9–15.https://www.researchgate.net/publication/288859235_Manifold_microchannel_heat_sinks_Theory_and_experiments
8.
Hadad
,
Y.
,
Radmard
,
V.
,
Rangarajan
,
S.
,
Farahikia
,
M.
,
Refai-Ahmed
,
G.
,
Chiarot
,
P. R.
, and
Sammakia
,
B.
,
2021
, “
Minimizing the Effects of on-Chip Hotspots Using Multi-Objective Optimization of Flow Distribution in Water-Cooled Parallel Microchannel Heatsinks
,”
ASME J. Electron. Packag.
,
143
(
2
), p. 021007.10.1115/1.4048590
9.
Hoang
,
C. H.
,
Rangarajan
,
S.
,
Khalili
,
S.
,
Ramakrisnan
,
B.
,
Radmard
,
V.
,
Hadad
,
Y.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2021
, “
Hybrid Microchannel/Multi-Jet Two-Phase Heat Sink: A Benchmark and Geometry Optimization Study of Commercial Product
,”
Int. J. Heat Mass Transfer
,
169
, p.
120920
.10.1016/j.ijheatmasstransfer.2021.120920
10.
Hoang
,
C. H.
,
Khalili
,
S.
,
Ramakrisnan
,
B.
,
Rangarajan
,
S.
,
Hadad
,
Y.
,
Radmard
,
V.
,
Sikka
,
K.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2020
, “
An Experimental Apparatus for Two-Phase Cooling of High Heat Flux Application Using an Impinging Cold Plate and Dielectric Coolant
,”
36th Semiconductor Thermal Measurement, Modeling Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 16–20, pp.
32
38
.10.23919/SEMITHERM50369.2020.9142831
11.
Wiriyasart
,
S.
, and
Naphon
,
P.
,
2019
, “
Liquid Impingement Cooling of Cold Plate Heat Sink With Different Fin Configurations: High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
140
, pp.
281
292
.10.1016/j.ijheatmasstransfer.2019.06.020
12.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.10.1016/S0017-9310(02)00101-1
13.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
14.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
64
74
.10.1016/j.applthermaleng.2008.02.002
15.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Parametric Study on Thermal and Hydraulic Characteristics of Laminar Flow in Microchannel Heat Sink With Fan-Shaped Ribs on Sidewalls—Part 2: Pressure Drop
,”
Int. J. Heat Mass Transfer
,
97
, pp.
1081
1090
.10.1016/j.ijheatmasstransfer.2016.02.076
16.
Hadad
,
Y.
,
Ramakrishnan
,
B.
,
Pejman
,
R.
,
Rangarajan
,
S.
,
Chiarot
,
P. R.
,
Pattamatta
,
A.
, and
Sammakia
,
B.
,
2019
, “
Three-Objective Shape Optimization and Parametric Study of a Micro-Channel Heat Sink With Discrete Non-Uniform Heat Flux Boundary Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
720
737
.10.1016/j.applthermaleng.2018.12.128
17.
Radmard
,
V.
,
Hadad
,
Y.
,
Rangarajan
,
S.
,
Hoang
,
C. H.
,
Fallahtafti
,
N.
,
Arvin
,
C. L.
,
Sikka
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2021
, “
Multi-Objective Optimization of a Chip-Attached Micro Pin Fin Liquid Cooling System
,”
Appl. Therm. Eng.
,
195
, p.
117187
.10.1016/j.applthermaleng.2021.117187
18.
Radmard
,
V.
,
Hadad
,
Y.
,
Azizi
,
A.
,
Rangarajan
,
S.
,
Hoang
,
C. H.
,
Arvin
,
C.
,
Sikka
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B.
,
2020
, “
Direct Micro-Pin Jet Impingement Cooling for High Heat Flux Applications
,”
36th Semiconductor Thermal Measurement, Modeling Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 16–20, pp.
1
9
.10.23919/SEMI-THERM50369.2020.9142864
19.
Radmard
,
V.
,
Azizi
,
A.
,
Rangarajan
,
S.
,
Fallahtafti
,
N.
,
Hoang
,
C. H.
,
Mohsenian
,
G.
,
Nemati
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B.
,
2021
, “
Performance Analysis of Impinging Chip-Attached Micro Pin Fin Direct Liquid Cooling Package for Hotspot Targeted Applications
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, June 1–4, pp.
220
228
.10.1109/ITherm51669.2021.9503295
20.
Hadad
,
Y.
,
Fallahtafti
,
N.
,
Choobineh
,
L.
,
Hoang
,
C. H.
,
Radmard
,
V.
,
Chiarot
,
P. R.
, and
Sammakia
,
B.
,
2020
, “
Performance Analysis and Shape Optimization of an Impingement Microchannel Cold Plate
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
8
), pp.
1304
1319
.10.1109/TCPMT.2020.3005824
21.
Hadad
,
Y.
,
Ramakrishnan
,
B.
,
Alkharabsheh
,
S.
,
Chiarot
,
P. R.
, and
Sammakia
,
B.
,
2017
, “
Numerical Modeling and Optimization of a V-Groove Warm Water Cold-Plate
,”
33rd Thermal Measurement, Modeling Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 13–17, pp.
314
319
.10.1109/SEMI-THERM.2017.7896948
22.
Kisitu
,
D.
, and
Ortega
,
A.
,
2021
, “
Thermal-Hydraulic Analytical Models of Split-Flow Microchannel Liquid-Cooled Cold Plates With Flow Impingement
,”
ASME
Paper No. IPACK2021-73283.10.1115/IPACK2021-73283
23.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.10.1016/j.ijheatfluidflow.2010.03.001
24.
Addagatla
,
A.
,
Fernandes
,
J.
,
Mani
,
D.
,
Agonafer
,
D.
, and
Mulay
,
V.
,
2015
, “
Effect of Warm Water Cooling for an Isolated Hybrid Liquid Cooled Server
,”
31st Thermal Measurement, Modeling Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
203
207
.10.1109/SEMI-THERM.2015.7100161
25.
Hackerman
,
N.
,
2002
, “
Effect of Temperature on Corrosion of Metals by Water
,” ACS Publications, Washington, DC, accessed Aug. 31, 2021, https://pubs.acs.org/doi/pdf/10.1021/ie50512a020
26.
Kim
,
C.-U.
, and
Chang
,
J.-Y.
,
2017
, “
Corrosion in a Closed-Loop Electronic Device Cooling System With Water as Coolant and Its Detection
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
558
564
.10.1109/ITHERM.2017.7992536
27.
Yaser Yons - Academia.Edu
,
2021
, “
(PDF) Corrosion Engineering: Principles and Practice
,” Yaser Yons - Academia.Edu, accessed July 20, 2022, https://books.google.com/books/about/Corrosion_Engineering.html?id=Zl2XlEOuJnMC
28.
Chirkunov
,
A.
, and
Kuznetsov
,
Y.
,
2015
, “
Chapter 4 - Corrosion Inhibitors in Cooling Water Systems
,”
Miner. Scales and Deposits
, pp. 85–105.10.1016/B978-0-444-63228-9.00004-8
29.
Loto
,
C. A.
,
2016
, “
Electroless Nickel Plating – A Review
,”
Silicon
,
8
(
2
), pp.
177
186
.10.1007/s12633-015-9367-7
30.
Shia
,
D.
,
Yang
,
J.
,
Sivapalan
,
S.
,
Soeung
,
R.
, and
Amoah-Kusi
,
C.
,
2021
, “
Corrosion Study on Single-Phase Liquid Cooling Cold Plates With Inhibited Propylene Glycol/Water Coolant for Data Centers
,”
ASME J. Manuf. Sci. Eng.
, 143(11), p. 111012.10.1115/1.4051059
31.
Mohapatra
,
A. C.
,
2006
, “
An Overview of Liquid Coolants for Electronics Cooling
,”
Electronics Cooling
, accessed July 20, 2022, https://www.electronics-cooling.com/2006/05/an-overview-of-liquid-coolants-for-electronics-cooling/
32.
Ellsworth
,
M. J.
,
2006
, “
Comparing Liquid Coolants From Both A Thermal And Hydraulic Perspective
,” Electronics Cooling, accessed July 20, 2022, https://www.electronics-cooling.com/2006/08/comparing-liquid-coolants-from-both-a-thermal-and-hydraulic-perspective/
33.
Techstreet Store, Techstreet LLC
,
2021
, “
Liquid Cooling Guidelines for Datacom Equipment Centers
,” 2nd ed., Techstreet LLC, Chicago, IL, accessed Nov. 13, 2021, https://www.techstreet.com/ashrae/standards/liquid-cooling-guidelines-for-datacom-equipment-centers-2nd-ed?ashrae_auth_token=&gateway_code=ashrae&product_id=1873288
34.
Future Facilities
,
2021
, “
Home | 6SigmaET by Future Facilities—Thermal Simulation of Electronics
,” Future Facilities, San Jose, CA, accessed Apr. 28, 2021, https://www.6sigmaet.info/
35.
Refai-Ahmed
,
G.
,
Do
,
H.
,
Hadad
,
Y.
,
Rangarajan
,
S.
,
Sammakia
,
B. G.
,
Gektin
,
V.
, and
Cader
,
T.
,
2020
, “
Establishing the Single-Phase Cooling Limit for Liquid-Cooled High Performance Electronic Devices
,” 22nd Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 2–4, pp.
340
346
.10.1109/EPTC50525.2020.9315014
36.
Ramakrishnan
,
B.
,
Tradat
,
M.
,
Hadad
,
Y.
,
Ghose
,
K.
, and
Sammakia
,
B.
,
2019
, “
Characterization of Liquid Cooled Cold Plates for a Multi Chip Module (MCM) and Their Impact on Data Center Chiller Operation
,” IEEE 17th International Conference on Industrial Informatics (
INDIN
), Helsinki, Finland, July 22–25, pp.
1419
1424
.10.1109/INDIN41052.2019.8972030
37.
Hoang
,
C. H.
,
Rangarajan
,
S.
,
Radmard
,
V.
,
Fallahtafti
,
N.
,
Tradat
,
M.
,
Arvin
,
C.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2021
, “
Two-Phase Impingement Cooling Using a Trapezoidal Groove Microchannel Heat Sink and Dielectric Coolant HFE 7000
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, June 1–4, pp.
237
245
.10.1109/ITherm51669.2021.9503283
38.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1472
1487
.10.1016/j.applthermaleng.2004.09.014
39.
Acikalin
,
T.
, and
Schroeder
,
C.
,
2014
, “
Direct Liquid Cooling of Bare Die Packages Using a Microchannel Cold Plate
,” 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
673
679
.10.1109/ITHERM.2014.6892346
You do not currently have access to this content.