Abstract

We introduce a coupled finite and boundary element method for elastic-plastic analysis over multiscale electronic packaging structures. Based on the finite element-boundary element (FE-BE) coupling algorithm, an automatic implementation procedure for the coupling of the abaqus with a self-written elastic BE code is introduced for elastic problems. In the mixed finite element method (FEM)-boundary element method (BEM) model, the effective stiffness and effective forces at the interfacial boundary are evaluated by the self-written BE code. Then, the obtained effective stiffness and effective forces are assembled to the global FE formulations by using the user subroutine (UEL) in abaqus. Numerical simulation of structures with plastic deformation, stress concentration, etc. is carried out by using FEM theory. The boundary element method is used for linear elastic domains with large-scale structures. The proposed method offers several key improvements compared with current analysis methods available for multiscale electronic packaging structures. The benefits are: (i) the powerful pre- and postprocessing of abaqus; (ii) the higher accuracy of the solution; (iii) the computational cost and time can be reduced by using the scheme; and (iv) solving systems with infinite extension by using the BEM as a supplement. Furthermore, we demonstrate the ability of the proposed approach to handle multiscale structures in electronic packaging problems.

References

1.
Islam
,
N.
,
Tan
,
K.
,
Yoon
,
S. W.
, and
Chen
,
T.
,
2019
, “
High Density Ultra-Thin Organic Substrates for Advanced Flip Chip Packages
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
325
329
.10.1109/ECTC.2019.00056
2.
Lederer
,
M.
,
Gökdeniz
,
Z.
,
Khatibi
,
G.
, and
Nicolics
,
J.
,
2021
, “
Constitutive Equations for Strain Rate and Temperature Dependent Mechanical Behaviour of Porous Ag-Sintered Joints in Electronic Packages
,”
Microelectron. Reliab.
,
126
, p.
114209
.10.1016/j.microrel.2021.114209
3.
Alizadeh
,
R.
, and
Mantooth
,
H. A.
,
2021
, “
A Review of Architectural Design and System Compatibility of Power Modules and Their Impacts on Power Electronics Systems
,”
IEEE Trans. Power Electron.
,
36
(
10
), pp.
11631
11646
.10.1109/TPEL.2021.3068760
4.
Mane
,
S. S.
,
Soon
,
K. H.
,
Bergmann
,
L.
,
Erstling
,
M.
,
Jayamani
,
E.
, and
Patra
,
J.
,
2021
, “
Impact of Thermo-Mechanical Stress Due to Probing and Wire Bonding on Cup Devices
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
11
(
8
), pp.
1258
1266
.10.1109/TCPMT.2021.3100100
5.
Cheng
,
H.-E.
, and
Chen
,
R.-S.
,
2014
, “
Interval Optimal Design of 3-D TSV Stacked Chips Package Reliability by Using the Genetic Algorithm Method
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2881
2897
.10.1016/j.microrel.2014.08.018
6.
Zhang
,
B.
,
Shan
,
G.
, and
Su
,
F.
,
2021
, “
Impact Reliability Analysis of a Rigid-Flex PCB System Under Acceleration Loads
,”
Microelectron. Reliab.
,
127
, p.
114374
.10.1016/j.microrel.2021.114374
7.
Xia
,
J.
,
Cheng
,
L.
,
Li
,
G.
, and
Li
,
B.
,
2017
, “
Reliability Study of Package-On-Package Stacking Assembly Under Vibration Loading
,”
Microelectron. Reliab.
,
78
, pp.
285
293
.10.1016/j.microrel.2017.09.012
8.
Yu
,
H.
,
Guo
,
Y.
,
Gong
,
Y.
, and
Qin
,
F.
,
2021
, “
Thermal Analysis of Electronic Packaging Structure Using Isogeometric Boundary Element Method
,”
Eng. Anal. Bound. Elem.
,
128
, pp.
195
202
.10.1016/j.enganabound.2021.04.008
9.
Vallepuga-Espinosa
,
J.
,
Ubero-Martínez
,
I.
,
Rodríguez-Tembleque
,
L.
, and
Cifuentes-Rodríguez
,
J.
,
2020
, “
A Boundary Element Procedure to Analyze the Thermomechanical Contact Problem in 3D Microelectronic Packaging
,”
Eng. Anal. Boundary Elem.
,
115
, pp.
28
39
.10.1016/j.enganabound.2020.02.011
10.
Khatir
,
Z.
, and
Lefebvre
,
S.
,
2004
, “
Boundary Element Analysis of Thermal Fatigue Effects on High Power IGBT Modules
,”
Microelectron. Reliab.
,
44
(
6
), pp.
929
938
.10.1016/j.microrel.2004.02.007
11.
Dong
,
C.
, and
Lee
,
K. Y.
,
2008
, “
Stress Analysis of Plastic IC Package Containing Various Interface Delaminations Using the Boundary Element Method
,”
Eng. Fract. Mech.
,
75
(
1
), pp.
1
16
.10.1016/j.engfracmech.2007.03.019
12.
Zienkiewicz
,
O. C.
,
Kelly
,
D. W.
, and
Bettess
,
P.
,
1977
, “
The Coupling of the Finite Element Method and Boundary Solution Procedures
,”
Int. J. Numer. Methods Eng.
,
11
(
2
), pp.
355
375
.10.1002/nme.1620110210
13.
Maljaars
,
P.
,
Grasso
,
N.
,
den Besten
,
J.
, and
Kaminski
,
M.
,
2020
, “
BEM–FEM Coupling for the Analysis of Flexible Propellers in Non-Uniform Flows and Validation With Full-Scale Measurements
,”
J. Fluids Struct.
,
95
, p.
102946
.10.1016/j.jfluidstructs.2020.102946
14.
Gimperlein
,
H.
,
Özdemir
,
C.
, and
Stephan
,
E. P.
,
2020
, “
A Time–Dependent FEM-BEM Coupling Method for Fluid–Structure Interaction in 3D
,”
Appl. Numer. Math.
,
152
, pp.
49
65
.10.1016/j.apnum.2020.01.023
15.
He
,
Z.
,
Liu
,
G.
,
Zhong
,
Z.
,
Zhang
,
G.
, and
Cheng
,
A.
,
2011
, “
A Coupled ES-FEM/BEM Method for Fluid–Structure Interaction Problems
,”
Eng. Anal. Boundary Elem.
,
35
(
1
), pp.
140
147
.10.1016/j.enganabound.2010.05.003
16.
Wu
,
H.
,
Yu
,
L.
, and
Jiang
,
W.
,
2019
, “
A Coupling FEM/BEM Method With Linear Continuous Elements for Acoustic-Structural Interaction Problems
,”
Appl. Acoust.
,
150
, pp.
44
54
.10.1016/j.apacoust.2019.02.001
17.
Pereira
,
M.
,
Mareze
,
P.
,
Godinho
,
L.
,
Amado-Mendes
,
P.
, and
Ramis
,
J.
,
2021
, “
Proposal of Numerical Models to Predict the Diffuse Field Sound Absorption of Finite Sized Porous Materials – BEM and FEM Approaches
,”
Appl. Acoust.
,
180
, p.
108092
.10.1016/j.apacoust.2021.108092
18.
Wang
,
K.
,
Liu
,
J.
, and
Xu
,
J.
,
2022
, “
An Efficient FEM-BEM Solution for Electromagnetic Analysis of Inhomogeneous Objects
,”
Eng. Anal. Boundary Elem.
,
134
, pp.
139
146
.10.1016/j.enganabound.2021.09.026
19.
Rodopoulos
,
D. C.
,
Gortsas
,
T. V.
,
Tsinopoulos
,
S. V.
, and
Polyzos
,
D.
,
2020
, “
Nonlinear BEM/FEM Scalar Potential Formulation for Magnetostatic Analysis in Superconducting Accelerator Magnets
,”
Eng. Anal. Boundary Elem.
,
113
, pp.
259
267
.10.1016/j.enganabound.2020.01.007
20.
Wang
,
J.
, and
Huang
,
Q.
,
2020
, “
On Coupled FEM-BEM Simulation of the Magneto-Mechanical Behavior of Single-Crystalline Ni-Mn-Ga Alloys
,”
Eng. Anal. Boundary Elem.
,
121
, pp.
143
157
.10.1016/j.enganabound.2020.09.013
21.
Rodopoulos
,
D. C.
,
Gortsas
,
T. V.
,
Polyzos
,
K.
, and
Tsinopoulos
,
S. V.
,
2019
, “
New BEM/BEM and BEM/FEM Scalar Potential Formulations for Magnetostatic Problems
,”
Eng. Anal. Boundary Elem.
,
106
, pp.
160
169
.10.1016/j.enganabound.2019.04.024
22.
Liravi
,
H.
,
Arcos
,
R.
,
Clot
,
A.
,
Conto
,
K. F.
, and
Romeu
,
J.
,
2022
, “
A 2.5D Coupled FEM–SBM Methodology for Soil–Structure Dynamic Interaction Problems
,”
Eng. Struct.
,
250
, p.
113371
.10.1016/j.engstruct.2021.113371
23.
Ai
,
Z. Y.
, and
Chen
,
Y. F.
,
2020
, “
FEM-BEM Coupling Analysis of Vertically Loaded Rock-Socketed Pile in Multilayered Transversely Isotropic Saturated Media
,”
Comput. Geotech.
,
120
, p.
103437
.10.1016/j.compgeo.2019.103437
24.
Luamba
,
E. S.
, and
de Paiva
,
J. B.
,
2022
, “
Static Analysis of Axially Loaded Piles in Multilayered Soils Using a BEM/FEM Formulation
,”
Eng. Anal. Boundary Elem.
,
135
, pp.
63
72
.10.1016/j.enganabound.2021.10.025
25.
Liu
,
Z.
, and
Dong
,
C.
,
2016
, “
Automatic Coupling of ABAQUS and a Boundary Element Code for Dynamic Elastoplastic Problems
,”
Eng. Anal. Boundary Elem.
,
65
, pp.
147
158
.10.1016/j.enganabound.2015.12.021
26.
Sharma
,
N.
,
Ranjan Mahapatra
,
T.
,
Kumar Panda
,
S.
, and
Mazumdar
,
A.
,
2018
, “
Acoustic Radiation Characteristics of un-Baffled Laminated Composite Conical Shell Panels
,”
Mater. Today: Proc.
,
5
(
11
), pp.
24387
24396
.10.1016/j.matpr.2018.10.234
27.
Helldörfer
,
B.
,
Haas
,
M.
, and
Kuhn
,
G.
,
2008
, “
Automatic Coupling of a Boundary Element Code With a Commercial Finite Element System
,”
Adv. Eng. Software
,
39
(
8
), pp.
699
709
.10.1016/j.advengsoft.2007.07.003
28.
Qin
,
F.
,
He
,
Q.
,
Gong
,
Y.
,
An
,
T.
,
Chen
,
P.
, and
Dai
,
Y.
,
2022
, “
The Application of FEM-BEM Coupling Method for Steady 2D Heat Transfer Problems With Multi-Scale Structure
,”
Eng. Anal. Boundary Elem.
,
137
, pp.
78
90
.10.1016/j.enganabound.2022.01.009
29.
Yang
,
Z.
,
Yao
,
F.
, and
Huang
,
Y.
,
2020
, “
Development of ABAQUS UEL/VUEL Subroutines for Scaled Boundary Finite Element Method for General Static and Dynamic Stress Analyses
,”
Eng. Anal. Boundary Elem.
,
114
, pp.
58
73
.10.1016/j.enganabound.2020.02.004
30.
Hetnarski
,
R.
, and
Ignaczak
,
J.
,
2006
, “
Mathematical Theory of Elasticity
,”
J. Therm. Stress.
,
29
(
5
), pp.
505
506
.10.1080/01495730500495751
31.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Butterworth-Heinemann
, Oxford, UK.
32.
Gong
,
Y.
,
Dong
,
C.
,
Qin
,
F.
,
Hattori
,
G.
, and
Trevelyan
,
J.
,
2020
, “
Hybrid Nearly Singular Integration for Three-Dimensional Isogeometric Boundary Element Analysis of Coatings and Other Thin Structures
,”
Comput. Methods Appl. Mech. Eng.
,
367
, p.
113099
.10.1016/j.cma.2020.113099
33.
Hong
,
H.
, and
Chen
,
J.
,
1988
, “
Derivations of Integral Equations of Elasticity
,”
J. Eng. Mech.
,
114
(
6
), pp.
1028
1044
.10.1061/(ASCE)0733-9399(1988)114:6(1028)
34.
Chen
,
J. T.
, and
Hong
,
H.-K.
,
1999
, “
Review of Dual Boundary Element Methods With Emphasis on Hypersingular Integrals and Divergent Series
,”
Appl. Mech. Rev.
,
52
(
1
), pp.
17
33
.10.1115/1.3098922
35.
Beer
,
G.
,
Smith
,
I.
, and
Duenser
,
C.
,
2008
,
The Boundary Element Method With Programming: For Engineers and Scientists
,
Springer
,
Vienna, Austria
.
36.
Simulia D.
,
2011
,
Abaqus 6.11 Analysis User's Manual
,
Abaqus 6.11 Documentation
.
37.
Li
,
Y.
,
Chen
,
P.
,
Qin
,
F.
,
An
,
T.
,
Dai
,
Y.
,
Zhang
,
M.
, and
Jin
,
Y.
,
2021
, “
Constitutive Modelling of Annealing Behavior in Through Silicon Vias-Copper
,”
Mater. Charact.
,
179
, p.
111359
.10.1016/j.matchar.2021.111359
38.
Chen
,
S.
,
Wang
,
Z.
,
En
,
Y.
,
Huang
,
Y.
,
Qin
,
F.
, and
An
,
T.
,
2018
, “
The Experimental Analysis and the Mechanical Model for the Debonding Failure of TSV-Cu/Si Interface
,”
Microelectron. Reliab.
,
91
, pp.
52
66
.10.1016/j.microrel.2018.08.005
39.
Qin
,
F.
,
Xiang
,
M.
, and
Wu
,
W.
,
2014
, “
The Stress-Strain Relationship of TSV-Cu Determined by Nanoindentation
,”
Acta Metall. Sin.
,
50
(
6
), p.
722
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSXB201406011.htm
You do not currently have access to this content.