Abstract

This paper investigates voiding issues in the underfilling process of ball grid array (BGA) chip packages under various parameter settings such as chip conveyor speed, valve pressure, temperature, and dispense pattern complicate. The study identifies valve pressure as the primary cause of voiding in large quantity BGA chips, achieving 88.9% in accuracy, supported with the deformation of the valve nozzle. Additionally, the findings reveal that racing effects occurs due to asymmetry of the solder ball array arrangement with percentage difference between the TSAM BGA chips experiments and its simulation counterparts in the range of 0.089–3.65%.

References

1.
Ng
,
F. C.
, and
Abas
,
M. A.
,
2021
, “
Underfill Flow in Flip-Chip Encapsulation Process: A Review
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
010803
.10.1115/1.4050697
2.
Abas
,
A.
,
Haslinda
,
M. S.
,
Ishak
,
M. H. H.
,
Nurfatin
,
A. S.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2016
, “
Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process
,”
Microelectron. Eng.
, 163, pp. 83–97.10.1016/j.mee.2016.06.010
3.
Abdullah
,
M. K.
,
Abdullah
,
M. Z.
,
Mujeebu
,
M.
,
Kamaruddin
,
S.
, and
Ariff
,
Z. M.
,
2009
, “
A Study on the Effect of Epoxy Molding Compound (EMC) Rheology During Encapsulation of stacked-CHIP Scale Packages (S-CSP)
,”
J. Reinf. Plast. Compos.
,
28
(
20
), pp.
2527
2538
.10.1177/0731684408092409
4.
Chen
,
K. M.
,
2008
, “
Comparing the Impacts of the Capillary and the Molded Underfill Process on the Reliability of the Flip-Chip BGA
,”
IEEE Trans. Compon. Package. Technol.
,
31
(
3
), pp.
586
591
.10.1109/TCAPT.2008.2001161
5.
Chang
,
R. Y.
,
Yang
,
W. H.
,
Hwang
,
S. J.
, and
Su
,
F.
,
2004
, “
Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
1
), pp.
200
209
.10.1109/TCAPT.2003.821682
6.
Chang
,
R.
, and
Yang
,
W.
,
2001
, “
Numerical Simulation of Mold Filling in Injection Molding Using a Three-Dimensional Finite Volume Approach
,”
Int. J. Numer. Methods Fluids
,
37
(
2
), pp.
125
148
.10.1002/fld.166
7.
Young
,
W.-B.
,
2010
, “
Modeling of a non-Newtonian Flow Between Parallel Plates in a Flip Chip Encapsulation
,”
Microelectron. Reliab.
,
50
(
7
), pp.
995
999
.10.1016/j.microrel.2010.03.008
8.
Colella
,
M.
, and
Baldwin
,
D.
,
2004
, “
Void Free Processing of Flip Chip on Board Assemblies Using No-Flow Underfills, Proc
,”
Int. Symp. Exhib. Adv. Packag. Mater. Process. Prop. Interfaces
,
9
, pp.
272
281
.10.1109/ISAPM.2004.1288026
9.
Edwards
,
K. L.
,
1994
, “
Towards More Effective Decision Support in Materials and Design Engineering
,”
Mater. Des.
,
15
(
5
), pp.
251
258
.10.1016/0261-3069(94)90071-X
10.
Ng
,
F. C.
,
Ali
,
M. Y. T.
,
Abas
,
A.
,
Khor
,
C. Y.
,
Samsudin
,
Z.
, and
Abdullah
,
M. Z.
,
2019
, “
A Novel Analytical Filling Time Chart for Design Optimisation of Flip-Chip Underfill Encapsulation Process
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7–8
), pp.
3521
3530
.10.1007/s00170-019-04573-6
11.
Martinek
,
P.
, and
Krammer
,
O.
,
2019
, “
Analysing Machine Learning Techniques for Predicting the Hole-Filling in Pin-in-Paste Technology
,”
Comput. Ind. Eng.
,
136
, pp.
187
194
.10.1016/j.cie.2019.07.033
12.
Yi
,
S.
, and
Jones
,
R.
,
2019
, “
Machine Learning Framework for Predicting Reliability of Solder Joints
,”
Soldering Surf. Mount Technol.
,
32
(
2
), pp.
82
92
.10.1108/SSMT-04-2019-0013
13.
Krammer
,
O.
,
Martinek
,
P.
,
Illes
,
B.
, and
Jakab
,
L.
,
2019
, “
Machine Learning-Based Prediction of Component Self-Alignment in Vapour Phase and Infrared Soldering
,”
Soldering Surf. Mount Technol.
,
31
(
3
), pp.
163
168
.10.1108/SSMT-11-2018-0045
14.
Liu
,
B.
,
Chen
,
G.
,
Lin
,
H. C.
,
Zhang
,
W.
, and
Liu
,
J.
,
2021
, “
Prediction of IGBT Junction Temperature Using Improved Cuckoo Search-Based Extreme Learning Machine
,”
Microelectron. Reliab.
,
124
(
May
), p.
114267
.10.1016/j.microrel.2021.114267
15.
Naqib
,
M. N.
,
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ali
,
M. Y. T.
, and
Samsudin
,
Z.
,
2022
, “
Prediction of the Void Formation in No-Flow Underfill Process Using Machine Learning-Based Algorithm
,”
Microelectron. Reliab.
,
135
, p.
114586
.10.1016/j.microrel.2022.114586
17.
Analytic Steps,
2021
, “
Binary and Multiclass Classification in Machine Learning
,” accessed May 27, 2022, https://www.analyticssteps.com/blogs/binary-and-multiclass-classification-machine-learning
18.
Shung
,
K. P.
,
2021
, “
Accuracy, Precision, Recall or F1?
,” accessed May 28, 2022, https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
19.
Dang
,
T.
,
2021
, “
Guide to Accuracy, Precision, and Recall
,” accessed May 28, 2022, https://www.mage.ai/blog/definitive-guide-to-accuracy-precision-recall-for-product-developers
20.
Microsoft Learn,
2021
, “
Two-Class Averaged Perceptron Component
,” accessed May 27, 2022, https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/two-class-averaged-perceptron
21.
22.
Microsoft Learn,
2021
, “
Two-Class Support Vector Machine component
,” accessed May 27, 2022, https://docs.microsoft.com/en-us/azure/machine-learning/component-reference/two-class-support-vector-machine
23.
Ardebili
,
H.
, and
Pecht
,
M. G.
,
2009
, “
Chapter 3 - Encapsulation Process Technology
,”
Encapsulation Technologies for Electronic Applications
,
Elsevier
, Amsterdam, The Netherlands, pp.
129
179
.
24.
Sorono
,
D. V.
,
Lin
,
J.
,
Chong
,
C. T.
,
Chong
,
S. C.
, and
Vempati
,
S. R.
,
2012
, “
Study on Mold Flow During Compression Molding for Embedded Wafer Level Package (EMWLP) With Multiple Chips
,” IEEE 14th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 5–7, pp.
336
341
.10.1109/EPTC.2012.6507103
25.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Abdullah
,
M. K.
,
Mujeebu
,
M. A.
,
Ramdan
,
D.
,
Majid
,
M. F. M. A.
,
Ariff
,
Z. M.
, and
Abdul Rahman
,
M. R.
,
2011
, “
Numerical Analysis on the Effects of Different Inlet Gates and Gap Heights in TQFP Encapsulation Process
,”
Int. J. Heat Mass Transfer
54
(
9–10
), pp.
1861
1870
.10.1016/j.ijheatmasstransfer.2010.10.038
26.
IPC-A-610
,
2010
, “
Acceptability of Electronic Assemblies
,” Revision F - July 2014 Supersedes Revision E, 8.3.12.4, pp.
8
93
.
27.
Ng
,
F. C.
,
Zawawi
,
M. H.
, and
Abas
,
M. A.
,
2021
, “
Spatial Analysis of Underfill Flow in Flip-Chip Encapsulation
,”
Soldering Surf. Mount Technol.
,
33
(
2
), pp.
112
127
.10.1108/SSMT-05-2020-0017
28.
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
Scaling Effect on Velocity Profiles in Capillary Underfill Flow
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
203
(
1
), p.
012013
.10.1088/1757-899X/203/1/012013
29.
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Che Ani
,
F.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method Study of BGA Bump Arrangements on Void Formation
,”
Microelectron. Reliab.
,
56
, pp.
170
181
.10.1016/j.microrel.2015.10.014
30.
ThinkML Team
,
2022
, “
CPU vs GPU in Machine Learning Algorithms: Which is Better?
,” accessed May 28, 2022, https://thinkml.ai/cpu-vs-gpu-in-machine-learning-algorithms-which-is-better/
31.
Yu
,
H.
,
2020
, “
Scanning Acoustic Microscopy for Material Evaluation
,”
Appl. Microsc.
,
50
(
1
), p.
25
.10.1186/s42649-020-00045-4
You do not currently have access to this content.