Abstract

This study investigated the thermal fatigue reliability of ball grid array (BGA) solder joints under accelerated thermal cycling, considering the impacts of solder alloy and temperature profile. Applying the Darveaux solder joint reliability assessment, simulations consider lead-based (63Sn37Pb and 62Sn36Pb2Ag) and lead-free (SAC105, SAC305, and SAC405) solder alloys under temperature profiles: 0°C(Tmin) to 100°C(Tmax), 40°C to 85°C, 40°C to 125°C, and 40°C to 150°C. Results indicate that SAC305 exhibited the highest equivalent stress, while 63Sn37Pb demonstrated the highest plastic strain and creep strain energy density. SAC105 displayed the lowest stress and strain parameters. Moreover, increasing the thermal cycling temperature range intensifies stress, strain, and damage parameters, with 40°C to 150°C showing the highest magnitudes. SAC405 exhibited superior thermal fatigue life compared to other alloys, with its cycles to failure outperforming 63Sn37Pb, SAC105, 63Sn36Pb2Ag, and SAC305 by 16832, 11992, 6218, and 3601 cycles, respectively. Lower temperature ranges enhance thermal fatigue life, with 0°C to 100°C recording 8%, 33%, and 53% higher life than 40°C to 85°C, 40°C to 125°C, and 40°C to 150°C, respectively. Notably, higher silver content and lower temperature ranges were associated with increased thermal fatigue life, providing valuable insights for BGA solder joint reliability enhancement.

References

1.
Apalowo
,
R. K.
,
Abas
,
A.
,
Bachok
,
Z.
,
Sharif
,
M. F. M.
,
Ani
,
F. C.
,
Ramli
,
M. R.
,
Mukhtar
,
M. A. F.
, and
bin
,
M.
,
2023
, “
Investigation of Hygrothermally Induced Failures in Multilayer Ceramic Capacitors During Thermal Reflow Process
,”
Microelectron. Reliab.
,
146
, p.
115028
.10.1016/j.microrel.2023.115028
2.
Hu
,
J. C.
,
Yang
,
K.
,
Wang
,
Q. Y.
,
Zhao
,
Q. C.
,
Jiang
,
Y. H.
, and
Liu
,
Y. J.
,
2024
, “
Ultra-Long Life Fatigue Behavior of a High-Entropy Alloy
,”
Int. J. Fatigue
,
178
, p.
108013
.10.1016/j.ijfatigue.2023.108013
3.
Long
,
X.
,
Lu
,
C.
,
Su
,
Y.
, and
Dai
,
Y.
,
2023
, “
Machine Learning Framework for Predicting the Low Cycle Fatigue Life of Lead-Free Solders
,”
Eng. Fail. Anal.
,
148
, p.
107228
.10.1016/j.engfailanal.2023.107228
4.
Zhang
,
Z.
,
Chen
,
J.
,
Wang
,
J.
,
Han
,
Y.
,
Yu
,
Z.
,
Wang
,
Q.
,
Zhang
,
P.
, and
Yang
,
S.
,
2022
, “
Effects of Solder Thickness on Interface Behavior and Nanoindentation Characteristics in Cu/Sn/Cu Microbumps
,”
Weld. World
,
66
(
5
), pp.
973
983
.10.1007/s40194-022-01261-0
5.
Fang
,
J. X.
,
Wang
,
J. X.
,
Wang
,
Y. J.
,
He
,
H. T.
,
Zhang
,
D. B.
, and
Cao
,
Y.
,
2022
, “
Microstructure Evolution and Deformation Behavior During Stretching of a Compositionally Inhomogeneous TWIP-TRIP Cantor-Like Alloy by Laser Powder Deposition
,”
Mater. Sci. Eng.: A
,
847
, p.
143319
.10.1016/j.msea.2022.143319
6.
Wu
,
Y.
,
Chen
,
J.
,
Zhang
,
L.
,
Ji
,
J.
,
Wang
,
Q.
, and
Zhang
,
S.
,
2022
, “
Effect of Boron on the Structural Stability, Mechanical Properties, and Electronic Structures of Γ′-Ni3Al in TLP Joints of Nickel-Based Single-Crystal Alloys
,”
Mater Today Commun.
,
31
, p.
103375
.10.1016/j.mtcomm.2022.103375
7.
Chen
,
Y.
,
Sun
,
S.
,
Zhang
,
T.
,
Zhou
,
X.
, and
Li
,
S.
,
2020
, “
Effects of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Laser-Welded NiTi/304SS Joint With Ni Filler
,”
Mater. Sci. Eng.: A
,
771
, p.
138545
.10.1016/j.msea.2019.138545
8.
Apalowo
,
R. K.
,
Abas
,
M. A.
,
Che Ani
,
F.
,
Muhamed Mukhtar
,
M. A. F.
, and
Ramli
,
M. R.
,
2024
, “
Thermal Fatigue Life Prediction and Intermetallic Compound Behaviour of SAC305 BGA Solder Joints Subject to Accelerated Thermal Cycling Test
,”
Solder. Surf. Mount Technol.
,
36
(
3
), pp.
154
164
.10.1108/SSMT-12-2023-0075
9.
Li
,
H.
,
An
,
T.
,
Bie
,
X.
,
Shi
,
G.
, and
Qin
,
F.
,
2016
, “
Thermal Fatigue Reliability Analysis of PBGA With Sn63Pb37 Solder Joints
,”
17th International Conference on Electronic Packaging Technology
, Wuhan, China, Aug. 16–19, pp.
1104
1107
.10.1109/ICEPT.2016.7583318
10.
Wang
,
Q.
,
Zhang
,
Y.
,
Liang
,
L.
,
Liu
,
Y.
, and
Irving
,
S.
,
2007
, “
Anand Parameter Test for Pb-Free Material SnAgCu and Life Prediction for a CSP
,”
Proceedings of the Electronic Packaging Technology Conference, EPTC
, Shanghai, China, Aug. 14–17, pp.
1
9
.10.1109/ICEPT.2007.4441437
11.
Liu
,
J.
,
Xu
,
J.
,
Paik
,
K. W.
,
He
,
P.
, and
Zhang
,
S.
,
2024
, “
In-Situ Isothermal Aging TEM Analysis of a Micro Cu/ENIG/Sn Solder Joint for Flexible Interconnects
,”
J. Mater. Sci. Technol.
,
169
, pp.
42
52
.10.1016/j.jmst.2023.06.020
12.
Wang
,
S.
,
Chen
,
X.
,
Luo
,
K.
,
Zhou
,
H.
,
Li
,
R.
,
He
,
P.
,
Paik
,
K. W.
, and
Zhang
,
S.
,
2023
, “
The Design of Low-Temperature Solder Alloys and the Comparison of Mechanical Performance of Solder Joints on ENIG and ENEPIG Interface
,”
J. Mater. Res. Technol.
,
27
, pp.
5332
5339
.10.1016/j.jmrt.2023.11.066
13.
Wang
,
W. L.
, and
Liang
,
Y. S.
,
2007
, “
Study on Failure Mechanism of BGA Solder Joints Crack During Wave Soldering
,”
Proceedings of the Electronic Packaging Technology Conference
,
EPTC
, Shanghai, China, Aug. 14–17, p.
1
.10.1109/ICEPT.2007.4441517
14.
Chinen
,
S. M.
, and
Siniawski
,
M. T.
,
2009
, “
Overview of Fatigue Failure of Pb-Free Solder Joints in CSP/BGA/Flip-Chip Applications
,”
J. Microelectron. Electron. Packag.
,
6
(
3
), pp.
149
153
.10.4071/1551-4897-6.3.149
15.
Li
,
W.
, and
Sun
,
X.
,
2017
, “
An Analysis Case on the Failure of BGA Solder Joints
,”
18th International Conference on Electronic Packaging Technology
, Harbin, China, Aug. 16–19, pp.
731
734
.10.1109/ICEPT.2017.8046553
16.
Tian
,
W.
,
Wu
,
Q.
, and
Zhou
,
L.
,
2018
, “
Failure Analysis Technology of Lead-Free BGA Solder Joints and Relevant Cases
,”
Proceedings of 19th International Conference on Electronic Packaging Technology
, Shanghai, China, Aug. 8–11, pp.
284
287
.10.1109/ICEPT.2018.8480817
17.
Arfaei
,
B.
,
Mahin-Shirazi
,
S.
,
Joshi
,
S.
,
Anselm
,
M.
,
Borgesen
,
P.
,
Cotts
,
E.
,
Wilcox
,
J.
, and
Coyle
,
R.
,
2013
, “
Reliability and Failure Mechanism of Solder Joints in Thermal Cycling Tests
,”
IEEE 63rd Electronic Components and Technology Conference
, Las Vegas, NV, May 28–31, pp.
976
985
.10.1109/ECTC.2013.6575693
18.
Kim
,
D. G.
,
Kim
,
J. W.
, and
Jung
,
S. B.
,
2006
, “
Evaluation of Solder Joint Reliability in Flip Chip Package Under Thermal Shock Test
,”
Thin Solid Films
,
504
(
1–2
), pp.
426
430
.10.1016/j.tsf.2005.09.097
19.
Fang
,
J. X.
,
Li
,
S. B.
,
Dong
,
S. Y.
,
Wang
,
Y. J.
,
Huang
,
H. S.
,
Jiang
,
Y. L.
, and
Liu
,
B.
,
2019
, “
Effects of Phase Transition Temperature and Preheating on Residual Stress in Multi-Pass & Multi-Layer Laser Metal Deposition
,”
J. Alloys Compd.
,
792
, pp.
928
937
.10.1016/j.jallcom.2019.04.104
20.
Apalowo
,
R. K.
,
Chronopoulos
,
D.
, and
Malik
,
M.
,
2018
, “
The Influence of Temperature on Wave Scattering of Damaged Segments Within Composite Structures
,”
MATEC Web Conf.
,
211
, p.
19005
.10.1051/matecconf/201821119005
21.
Tee
,
T. Y.
,
Ng
,
H. S.
, and
Zhong
,
Z.
,
2006
, “
Board Level Solder Joint Reliability Analysis of Stacked Die Mixed Flip-Chip and Wirebond BGA
,”
Microelectron. Reliab.
,
46
(
12
), pp.
2131
2138
.10.1016/j.microrel.2006.01.010
22.
Apalowo
,
R. K.
,
Abas
,
M. A.
,
Muhamed Mukhtar
,
M. A. F.
,
Che Ani
,
F.
, and
Ramli
,
M. R.
,
2024
, “
Numerical Investigation of Thermal Fatigue Crack Growth Behavior in SAC305 BGA Solder Joints
,”
Solder. Surf. Mount Technol.
,
36
(
2
), pp.
101
110
.10.1108/SSMT-08-2023-0049
23.
Zhang
,
X.
, and
Lee
,
S. W. R.
,
1998
, “
Thermal Fatigue Life Prediction for Solder Joints With the Consideration of Damage Evolution
,”
Proceedings of the Electronic Packaging Technology Conference, EPTC
, Singapore, Dec. 10, pp.
279
285
.10.1109/EPTC.1998.756016
24.
Yang
,
Q. D.
,
Shim
,
D. J.
, and
Spearing
,
S. M.
,
2004
, “
A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints
,”
Microelectron. Eng.
,
75
(
1
), pp.
85
95
.10.1016/j.mee.2003.11.009
25.
Yang
,
P.
,
Liu
,
D.
,
Zhao
,
Y.
,
Tang
,
Y.
, and
Wang
,
H.
,
2013
, “
Approach on the Life-Prediction of Solder Joint for Electronic Packaging Under Combined Loading
,”
IEEE Trans. Reliab.
,
62
(
4
), pp.
870
875
.10.1109/TR.2013.2285038
26.
Benabou
,
L.
,
Sun
,
Z.
,
Pougnet
,
P.
, and
Dahoo
,
P. R.
,
2015
, “
Continuum Damage Approach for Fatigue Life Prediction of Viscoplastic Solder Joints
,”
J. Mech.
,
31
(
5
), pp.
525
531
.10.1017/jmech.2015.15
27.
Su
,
S.
,
Akkara
,
F. J.
,
Thaper
,
R.
,
Alkhazali
,
A.
,
Hamasha
,
M.
, and
Hamasha
,
S.
,
2019
, “
A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040802
.10.1115/1.4043405
28.
Depiver
,
J. A.
,
Mallik
,
S.
, and
Harmanto
,
D.
,
2021
, “
Solder Joint Failures Under Thermo-Mechanical Loading Conditions – A Review
,”
Adv. Mater. Process. Technol.
,
7
(
1
), pp.
1
26
.10.1080/2374068X.2020.1751514
29.
Depiver
,
J. A.
,
Mallik
,
S.
, and
Amalu
,
E. H.
,
2021
, “
Thermal Fatigue Life of Ball Grid Array (BGA) Solder Joints Made From Different Alloy Compositions
,”
Eng. Fail. Anal.
,
125
, p.
105447
.10.1016/j.engfailanal.2021.105447
30.
Chen
,
Z.
,
Zhang
,
Z.
,
Dong
,
F.
,
Liu
,
S.
, and
Liu
,
L.
,
2021
, “
A Hybrid Finite Element Modeling: Artificial Neural Network Approach for Predicting Solder Joint Fatigue Life in Wafer-Level Chip Scale Packages
,”
ASME J. Electron. Packag.
,
143
(
1
), p.
011001
.10.1115/1.4047227
31.
Pan
,
Y.
,
Zhou
,
G.
,
Wang
,
X.
, and
Kuang
,
F.
,
2020
, “
A Rapid Life-Prediction Approach for Solder Joints Based on Modified Engelmaier Fatigue Model
,”
Microelectron. Reliab.
,
114
, p.
113844
.10.1016/j.microrel.2020.113844
32.
Shaygi
,
M.
,
Li
,
M.
,
Lang
,
K. J.
,
Laux
,
H.
, and
Wunderle
,
B.
,
2021
, “
Finite Element-Based Lifetime Modelling of SAC Solder Joints in LED Applications
,”
22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE
, St. Julian, Malta, Apr. 19–21, pp.
1
11
.10.1109/EuroSimE52062.2021.9410847
33.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
Proceedings–Electronic Components and Technology Conference
, Las Vegas, NV, May 21–24, pp.
1048
1058
.10.1109/ECTC.2000.853299
34.
Gao
,
J.
, and
Kwak
,
J. B.
,
2021
, “
Reliability and Thermal Fatigue Life Prediction of Solder Joints for Advanced Automotive Microelectronics
,”
J. Mech. Sci. Technol.
,
35
(
8
), pp.
3633
3641
.10.1007/s12206-021-0734-6
35.
Gharaibeh
,
M. A.
,
2022
, “
Optimization of Dwell and Ramp Times for SAC305 Solder Thermal Cycling Fatigue Life for Testing and Real-Life Applications
,”
J. Failure Anal. Prev.
,
22
(
1
), pp.
276
285
.10.1007/s11668-021-01290-9
36.
Che
,
F. X.
, and
Pang
,
J. H. L.
,
2004
, “
Thermal Fatigue Reliability Analysis for PBGA With Sn-3.8Ag-0.7Cu Solder Joints
,”
Proceedings of 6th Electronics Packaging Technology Conference
, Singapore, Dec. 8–10, pp.
787
792
.10.1109/EPTC.2004.1396715
37.
IPC/JEDEC,
2008
,
IPC/JEDEC J-STD-020D.1: Industry Standard Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface
,
Joint Industry Standard
,
IPC, Bannockburn, IL
.
38.
IPC
,
2010
,
IPC-7351B: Generic Requirements for Surface Mount Design and Land Pattern Standard
,
IPC
,
Bannockburn, IL
.
39.
Long
,
X.
,
Su
,
T.
,
Lu
,
C.
,
Wang
,
S.
,
Huang
,
J.
, and
Chang
,
C.
,
2023
, “
An Insight Into Dynamic Properties of SAC305 Lead-Free Solder Under High Strain Rates and High Temperatures
,”
Int. J. Impact Eng.
,
175
, p.
104542
.10.1016/j.ijimpeng.2023.104542
40.
Eckermann
,
J.
,
Mehmood
,
S.
,
Davies
,
H. M.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
,
Sienz
,
J.
,
Jones
,
A.
, and
Sommerfeld
,
P.
,
2014
, “
Computational Modeling of Creep-Based Fatigue as a Means of Selecting Lead-Free Solder Alloys
,”
Microelectron. Reliab.
,
54
(
6–7
), pp.
1235
1242
.10.1016/j.microrel.2014.02.017
41.
Seo
,
E. Y.
, and
Ryu
,
J. E.
,
2020
, “
Influence of Reflow Profile on Thermal Fatigue Behaviors of Solder Ball Joints
,”
J. Mater. Eng. Perform.
,
29
(
6
), pp.
4095
4104
.10.1007/s11665-020-04899-3
42.
Che
,
F. X.
,
Zhu
,
W. H.
,
Poh
,
E. S. W.
,
Zhang
,
X. W.
, and
Zhang
,
X. R.
,
2010
, “
The Study of Mechanical Properties of Sn–Ag–Cu Lead-Free Solders With Different Ag Contents and Ni Doping Under Different Strain Rates and Temperatures
,”
J. Alloys Compd.
,
507
(
1
), pp.
215
224
.10.1016/j.jallcom.2010.07.160
You do not currently have access to this content.