Global warming and the ever increasing emission levels of combustion engines have forced the engine manufacturers to look for alternative fuels for high engine performance and low emissions. Gaseous fuel mixtures such as biogas, syngas, and liquefied petroleum gas (LPG) are new alternative fuels that have great potential to be used with combustion engines. In the present work, laminar flame speeds (SL) of alternative fuel mixtures, mainly LPG (60% butane, 20% isobutane, and 20% propane) and methane have been studies using the tube method at ambient conditions. In addition, the effect of adding other fuels and gases such as hydrogen, oxygen, carbon dioxide, and nitrogen on SL has also been investigated. The results show that any change in the fuel mixture composition directly affects SL. Measurements of SL of CH4/LPG–air mixtures have found to be about 56 cm/s at ø = 1.1 with 60% LPG in the mixture, which is higher than SL of both pure fuels at the same ø. Moreover, the addition of H2 and O2 to the fuel mixtures increases SL notably, while the addition of CO2/N2 mixture to the fuel mixture, to simulate the EGR effect, decreases SL of CH4/LPG–air mixtures.

References

1.
Zheng
,
S.
,
Zhang
,
X.
,
Xu
,
J.
, and
Jin
,
B.
,
2012
, “
Effects of Initial Pressure and Hydrogen Concentration on Laminar Combustion Characteristics of Diluted Natural Gas–Hydrogen–Air Mixture
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12852
12859
.10.1016/j.ijhydene.2012.05.089
2.
He
,
Y.
,
Wang
,
Z.
,
Yang
,
L.
,
Whiddon
,
R.
,
Li
,
Z.
,
Zhou
,
J.
, and
Cen
,
K.
,
2012
, “
Investigation of Laminar Flame Speeds of Typical Syngas Using Laser Based Bunsen Method and Kinetic Simulation
,”
Fuel
,
95
, pp.
206
213
.10.1016/j.fuel.2011.09.056
3.
Glassman
,
I.
, and
Yetter
,
R.
,
2008
,
Combustion
, 4th ed.,
Elsevier Inc.
, London, pp.
147
260
.
4.
Bar
,
A.
,
2012
, “
Development of an Experimental Facility for the Measurement of Burning Velocity of Gaseous Fuels in a Tube Using LDR
,” Ph.D. thesis, Faculty of Engineering & Technology, Jadavpur University, Kolkata, India.
5.
Bosschaart
,
K. J.
,
de Goey
,
L. P. H.
, and
Burgers
,
J. M.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.10.1016/j.combustflame.2003.10.005
6.
Rallis
,
C. J.
,
1980
, “
The Determination of Laminar Burning Velocity
,”
Prog. Energy Combust. Sci.
,
6
(
4
), pp.
303
329
.10.1016/0360-1285(80)90008-8
7.
Koroll
,
G. W.
,
Kumar
,
R. K.
, and
Bowles
,
E. M.
,
1993
, “
Burning Velocities of Hydrogen Air Mixtures
,”
Combust. Flame
,
94
(
3
), pp.
330
340
.10.1016/0010-2180(93)90078-H
8.
Liu
,
D. D. S.
, and
MacFarlane
,
R.
,
1983
, “
Laminar Burning Velocities of Hydrogen–Air and Hydrogen–Air–Steam Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
59
71
.10.1016/0010-2180(83)90151-7
9.
Tripathi
,
A.
,
Chandra
,
H.
, and
Agrawal
,
M.
,
2010
, “
Effect of Mixture Constituents on the Laminar Burning Velocity of LPG–CO2–Air Mixtures
,”
ARPN J. Eng. Appl. Sci.
,
5
(
3
), pp.
16
21
.
10.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
1317
1323
.10.1016/S0082-0784(06)80773-3
11.
McLean
, I
. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
749
757
.10.1016/S0082-0784(06)80707-1
12.
Brown
,
M. J.
,
McLean
, I
. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
,
1996
, “
Markstein Lengths of CO/H2/Air Flames, Using Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
875
881
.10.1016/S0082-0784(96)80297-9
13.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
,
1997
, “
Properties of Laminar Premixed CO/H2/Air Flames at Various Pressures
,”
J. Propul. Power
,
13
(
2
), pp.
239
245
.10.2514/2.5154
14.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1261
1268
.10.1016/j.proci.2008.06.110
15.
Singh
,
J. B.
, and
Pant
,
G. C.
,
2007
, “
Experimental Investigation and Mathematical Modelling to Study the Premixed Laminar Flame Propagation
,”
Def. Sci. J.
,
57
(
5
), pp.
661
668
.10.14429/dsj.57.1799
16.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.10.1016/0010-2180(80)90046-2
17.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.10.1016/S0010-2180(99)00142-X
18.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
1997
, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
(
1–2
), pp.
1
24
.10.1016/S0010-2180(96)00151-4
19.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
”,
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.10.1115/1.4028363
20.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.10.1115/1.4006480
21.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
190
196
.10.1115/1.1339984
22.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.10.1016/j.combustflame.2011.12.005
23.
Eisazadeh-Far
,
K.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
Thermodynamic Properties of Ionized Gases at High Temperatures
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022201
.10.1115/1.4003881
24.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.10.1016/j.fuel.2010.11.020
25.
Qiao
,
L.
,
Kim
,
C. H.
, and
Faeth
,
G. M.
,
2005
, “
Suppression Effects of Diluents on Laminar Premixed Hydrogen/Oxygen/Nitrogen Flames
,”
Combust. Flame
,
143
(
1–2
), pp.
79
96
.10.1016/j.combustflame.2005.05.004
26.
Vu
,
T. M.
,
Park
,
J.
,
Kim
,
J. S.
,
Kwon
,
O. B.
,
Yun
,
J. H.
, and
Keel
,
S. I.
,
2011
, “
Experimental Study on Cellular Instabilities in Hydrocarbon/Hydrogen/Carbon Monoxide–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
36
(
11
), pp.
6914
6924
.10.1016/j.ijhydene.2011.02.085
27.
Yan
,
B.
,
Wu
,
Y.
,
Liu
,
C.
,
Yu
,
J. F.
,
Li
,
B.
,
Li
,
Z. S.
,
Chen
,
G.
,
Bai
,
X. S.
,
Aldén
,
M.
, and
Konnov
,
A. A.
,
2011
, “
Experimental and Modeling Study of Laminar Burning Velocity of Biomass Derived Gases/Air Mixtures
,”
Int. J. Hydrogen Energy
,
36
(
5
), pp.
3769
3777
.10.1016/j.ijhydene.2010.12.015
28.
Chaichan
,
M. T.
,
2013
, “
Measurements of Laminar Burning Velocities and Markstein Length for LPG–Hydrogen–Air Mixtures
,”
Int. J. Eng. Res. Dev.
,
9
(
3
), pp.
1
91
.
29.
Wei
,
L.
,
Kuo
,
P. K.
,
Thomas
,
R. L.
,
Anthony
,
T. R.
, and
Banholzer
,
W. F.
,
1993
, “
Thermal Conductivity of Isotopically Modified Single Crystal Diamond
,”
Phys. Rev. Lett.
,
70
(
24
), pp.
3764
3767
.10.1103/PhysRevLett.70.3764
30.
Ahmed
,
S. F.
,
2014
, “
The Probabilistic Nature of Ignition in Turbulent Highly-Strained Lean Premixed Methane–Air Flames for Low-Emission Engines
,”
Fuel
,
134
, pp.
97
106
.10.1016/j.fuel.2014.05.052
31.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Gao
,
J.
,
Huang
,
Z. H.
, and
Cheng
,
Q.
,
2004
, “
Measurements of Markstein Numbers and Laminar Burning Velocities for Liquefied Petroleum Gas–Air Mixtures
,”
Fuel
,
83
(
10
), pp.
1281
1288
.10.1016/j.fuel.2003.12.013
32.
Hermanns
,
R. T. E.
,
Konnov
,
A. A.
,
Bastiaans
,
R. J. M.
,
de Goey
,
L. P. H.
,
Lucka
,
K.
, and
Köhne
,
H.
,
2010
, “
Effects of Temperature and Composition on the Laminar Burning Velocity of CH4 + H2 + O2 + N2 Flames
,”
Fuel
,
89
(
1
), pp.
114
121
.10.1016/j.fuel.2009.08.010
33.
Bradley
,
D.
,
Gaskel
,
P. H.
, and
Gu
,
X. J.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane–Air Flames: A Computational Study
,”
Combust. Flame
,
104
(
1–2
), pp.
176
198
.10.1016/0010-2180(95)00115-8
34.
Huzayyin
,
A. S.
,
Moneib
,
H. A.
,
Shehatta
,
M. S.
, and
Attia
,
A. M. A.
,
2008
, “
Laminar Burning Velocity and Explosion Index of LPG–Air and Propane–Air Mixtures
,”
Fuel
,
87
(
1
), pp.
39
57
.10.1016/j.fuel.2007.04.001
35.
Hermanns
,
R. T. E.
,
2007
,
Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures
,
Universal Press
,
Veenendaal, The Netherlands
.
36.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.
37.
Jomaas
,
G.
,
Law
,
C. K.
, and
Bechtold
,
J. K.
,
2007
, “
On Transition to Cellularity in Expanding Spherical Flames
,”
J. Fluid Mech.
,
583
, pp.
1
26
.10.1017/S0022112007005885
38.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
012601
.10.1115/1.4005246
You do not currently have access to this content.