Abstract

Variable valve timing technologies for internal combustion engines are used to improve power, torque, reduce emissions, and increase fuel efficiency. First, the paper presents a new electrohydraulic full variable valve actuator (FVVA) system which can control the seating velocity of engine valve flexibly. Second, based on the NSGA-II genetic algorithm, the paper outlines a multi-objective optimization strategy and designs the parameters of the FVVA system to make the system easier to implement. Third, the paper builds the combined FVVA engine simulation model. The combined simulation and experimental results are executed to validate the designed FVVA engine. The simulation results show that brake power is improved between 1.31% and 4.48% and the torque is improved by 1.32–4.47%. Brake thermal efficiency and volumetric efficiency also show improvement. Experimental results have good agreement with the simulation results. The research results can provide a basis for engine modification design.

References

1.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2017
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
. 10.1115/1.4038464
2.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2017
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
. 10.1115/1.4038625
3.
Leroy
,
T.
,
Chauvin
,
J.
, and
Petit
,
N.
,
2009
, “
Motion Planning for Experimental air Path Control of a Variable-Valve-Timing Spark Ignition Engine
,”
Control Eng. Pract.
,
17
(
12
), pp.
1432
1439
. 10.1016/j.conengprac.2008.10.010
4.
Lancefield
,
T.
,
Methley
,
I.
,
Räse
,
U.
, and
Kuhn
,
T.
,
2000
, “
The Application of Variable Event Valve Timing to a Modern Diesel Engine,” SAE Technical Paper
, p.
2000-01-1229
. 10.4271/2000-01-1229
5.
Liu
,
F. F.
,
Li
,
H.
,
Gao
,
F. J.
,
Wang
,
Y.
,
Tan
,
M.
,
Guo
,
Y.
, and
Peng
,
Y.
,
2010
, “
A new Electro-Hydraulic Variable Valve-Train System for I.C Engine
,”
2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR)
,
Wu Han, China
,
Mar. 6–7
, pp.
174
179
. http://dx.doi.org/10.1109/car.2010.5456658
6.
Buuck
,
B.
, and
Hampton
,
K.
,
1997
, “
Engine Trends and Valvetrain Systems for Improved Performance, Fuel Economy and Emissions
,”
Proceedings of the International Symposium on Valve Train System Design and Materials
,
Detroit
,
Apr. 14–15
, p.
3
.
7.
Abagnale
,
C.
,
Migliaccio
,
M.
, and
Pennacchia
,
O.
,
2013
, “
Mechanical Variable Valve Actuation Systems for Motorcycle Engines
,”
Proceedings of the World Congress on Engineering
,
London
,
July 3–5
, pp.
1809
1814
. http://dx.doi.org/10.4271/2009-24-0080
8.
Cairns
,
A.
,
Zhao
,
H.
,
Todd
,
A.
, and
Aleiferis
,
P.
,
2013
, “
A Study of Mechanical Variable Valve Operation With Gasoline–Alcohol Fuels in a Spark Ignition Engine
,”
Fuel
,
106
, pp.
802
813
. 10.1016/j.fuel.2012.10.041
9.
Lu
,
Y.
, and
Olsen
,
D. B.
,
2017
, “
Optimization Method and Simulation Study of a Diesel Engine Using Full Variable Valve Motions
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072804
. 10.1115/1.4035736
10.
Fontana
,
G.
, and
Galloni
,
E.
,
2009
, “
Variable Valve Timing for Fuel Economy Improvement in a Small Spark-Ignition Engine
,”
Appl. Energy
,
86
(
1
), pp.
96
105
. 10.1016/j.apenergy.2008.04.009
11.
Kocher
,
L.
,
Koeberlein
,
E.
,
Van Alstine
,
D. G.
,
Strickerand
,
K.
, and
Shaver
,
G.
,
2012
, “
Physically Based Volumetric Efficiency Model for Diesel Engines Utilizing Variable Intake Valve Actuation
,”
Int. J. Engine Res.
,
13
(
2
), pp.
169
184
. 10.1177/1468087411424378
12.
Tomoda
,
T.
,
Ogawa
,
T.
,
Ohki
,
H.
,
Kogo
,
T.
,
Nakataniand
,
K.
, and
Hashimoto
,
E.
,
2010
, “
Improvement of Diesel Engine Performance by Variable Valve Train System International
,”
J. Eng. Res.
,
11
(
5
), pp.
331
344
. 10.1243/14680874JER586
13.
Milovanovic
,
N.
,
Chen
,
R.
, and
Turner
,
J.
,
2004
, “
Influence of Variable Valve Timings on the Gas Exchange Process in a Controlled Auto-Ignition Engine
,”
J Automob. Eng.
,
218
(
5
), pp.
567
583
. 10.1243/095440704774061228
14.
Elkady
,
M.
,
Elmarakbi
,
A.
,
Knapton
,
D.
,
Saleh
,
M.
,
Abdelhameed
,
M.
, and
Bawady
,
A.
,
2013
, “
Theoretical and Experimental Analysis of Electromagnetic Variable Valve Timing Control Systems for Improvement of Spark Ignition Engine Performance
,”
J. Eng. Des. Technol.
,
3
(
1
), pp.
19
31
. 10.4172/2167-7670.1000105
15.
Ahmad Ghazi Mir Saied
,
S.
,
Shamdani Amir
,
H.
, and
Shamekhi Amir
,
H.
,
2006
, “
On the Use of VVT Strategy for the Maximum Volumetric Efficiency in Turbocharged Diesel Engines
,”
Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division
,
Aachen, Germany
,
May 7–10
, pp.
147
154
. http://dx.doi.org/10.1115/ices2006-1407
16.
Thomas
,
G.
,
Simon
,
D.
, and
Michelini
,
J.
,
2015
, “
Biogeography-Based Optimization of a Variable Camshaft Timing System
,”
Eng. Appl. Artif. Intell.
,
45
, pp.
376
387
. 10.1016/j.engappai.2015.07.015
17.
Hosaka
,
T.
, and
Hamazaki
,
M.
,
1991
, “
Development of the Variable Valve Timing and Lift (Vtec) Engine for the Honda nsx
,” SAE Technical Paper No. 910008.
18.
Flierl
,
R.
, and
Klüting
,
M.
,
2000
, “
The Third Generation of Valvetrains—New Fully Variable Valvetrains for Throttle-Free Load Control
,”
SAE Technical Paper Series
, p.
2000-01-1227
. 10.4271/2000-01-1227
19.
Shuanlu
,
Z.
,
Zhenfeng
,
Z.
,
Changlu
,
Z.
,
Fujun
,
Z.
, and
Shan
,
W.
,
2016
, “
Development and Validation of Electro-Hydraulic Camless Free-Piston Engine
,”
Appl. Therm. Eng.
,
102
, pp.
1197
1205
. 10.1016/j.applthermaleng.2016.03.093
20.
Ishmael
,
Z.
,
Joseph
,
C.
, and
Rapelang
,
M.
,
2013
, “
Designing a Model of a Full Control Module for a Camless Engine Employing Rotary Valves
,”
IEEE AFRICON Conference
,
Pointe-Aux-Piments, Mauritius
,
Sept. 9–12
. http://dx.doi.org/10.1109/afrcon.2019.6757724
21.
Kanghyun
,
N.
, and
Seibum
,
B. C.
,
2012
, “
Development of a Camless Engine Valve Actuator System for Robust Engine Valve Timing Control
,”
Int. J. Veh. Syst. Modell. Test.
,
7
(
4
), pp.
372
389
. 10.1504/IJVSMT.2012.049429
22.
Lumkes
,
J. H.
, Jr.
,
Van Doorn IV
,
W.
,
Donaldson
,
J.
,
2005
, “
The Design and Simulation of a High Force Low Power Actuation System for Camless Engines
,”
ASME Dyn. Syst. Contr. Div.
,
74
(
1
), pp.
553
561
. 10.1115/imece2005-81808
23.
Chen
,
J.
,
Wang
,
Z.
, and
Tian
,
F.
,
2016
, “
A New Hydraulic Variable Valve Timing and Lift System for Spark Ignition Engine
,”
Chem. Eng. Trans.
,
51
, pp.
1249
1254
.
24.
Murtaza
,
G.
,
Bhatti
,
A. I.
, and
Ahmed
,
Q.
,
2016
, “
Control-Oriented Model of Atkinson Cycle Engine With Variable Intake Valve Actuation
,”
ASME J. Dyn. Syst. Meas. Contr.
,
138
(
6
), p.
DS-15-1344
. 10.1115/1.4032746
25.
Shiao
,
Y.
, and
Dat
,
L. V.
,
2012
, “
Efficiency Improvement for an Unthrottled SI Engine at Part Load
,”
Int. J. Automot. Technol.
,
13
(
6
), pp.
885
893
. 10.1007/s12239-012-0089-1
26.
Gillella
,
P. K.
,
2012
, “
Design and Control of Fully Flexible Valve Actuation Systems for Camless Engines
,” Dissertation,
University of Minnesota
,
Minneapolis, MN
.
27.
Yang
,
Y.-P.
,
Liu
,
J.-J.
,
Ye
,
D.-H.
,
Chen
,
Y.-R.
, and
Lu
,
P.-H.
,
2013
, “
Multiobjective Optimal Design and Soft Landing Control of an Electromagnetic Valve Actuator for a Camless Engine
,”
IEEE/ASME Trans. Mechatronics
,
18
(
3
), pp.
963
972
. 10.1109/TMECH.2012.2195728
28.
Gillella
,
P. K.
,
Song
,
X.
, and
Sun
,
Z.
,
2014
, “
Time-Varying Internal Model-Based Control of a Camless Engine Valve Actuation System
,”
IEEE Trans. Cont. Syst. Technol.
,
22
(
4
), pp.
1498
1510
. 10.1109/TCST.2013.2280902
29.
Deng
,
Y.
, and
Liu
,
Z.
,
2012
, “
Optimal Design of Pilot Proportional Relief Valve’s Structural Parameters in Giant Forging Hydraulic Press
,”
2012 International Conference on Intelligent Systems Design and Engineering Applications
,
Sanya, Hainan, China
,
Jan. 6–7
, pp.
412
416
. http://dx.doi.org/10.1109/isdea.2012.419
30.
Chen
,
Y.
,
Wang
,
X.
,
Zhang
,
X.
,
Li
,
Y.
, and
Zheng
,
G.
,
2016
, “
Simulation Study on the Parameters of Hydraulic Flapper-Nozzle Valve
,”
AUS 2016—2016 IEEE/CSAA International Conference on Aircraft Utility Systems
,
Beijing, China
,
Oct. 10–12
, pp.
1240
1243
. http://dx.doi.org/10.1109/aus.2016.7748221
31.
Zou
,
K.-F.
,
Li
,
Y.-X.
,
Ouyang
,
G.-Y.
, and
Yang
,
Z.-S.
,
2005
, “
Influence of Structural Parameters on Hydraulic Response of High-Pressure Common-Rail Injector
,”
Chin. Intern. Combust. Engine Eng.
,
26
(
4
), pp.
24
27
.
32.
1999
,
CY4102BG Engine Specifications
.
DongfengChaoyang Diesel Co., Ltd
.
33.
Hairong
,
G.
,
Chongyu
,
X.
,
Yimin
,
L.
, and
Fuchun
,
W.
,
2011
, “
AMESim Used in Dynamics Simulation on Hydraulic Milling Machine
,”
2011 IEEE 3rd International Conference on Communication Software and Networks
,
Xi'an, China
,
May 27–29
, pp.
620
623
. http://dx.doi.org/10.1109.iccsn.2011.6014166
34.
Larguech
,
S.
,
Aloui
,
S.
,
Pagès
,
O.
,
Hajjaji
,
A.
, and
Chaari
,
A.
,
2016
, “
Robust Control Approach for a Diesel Engine: AMESim Validation
,”
2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)
,
Sousse, Tunisia
,
Dec. 19–21
, pp.
514
519
. http://dx.doi.org/10.1109/sta.2016.7952085
35.
Hamel
,
J. M.
,
Allphin
,
D.
, and
Elroy
,
J.
,
2018
, “
Multi-Objective Optimization Model Development to Support Sizing Decisions for a Novel Reciprocating Steam Engine Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072204
. 10.1115/1.4039611
36.
Gillella
,
P.
, and
Sun
,
Z.
,
2011
, “
Design, Modeling, and Control of a Camless Valve Actuation System With Internal Feedback
,”
IEEE/ASME Trans. Mechatronics
,
16
(
3
), pp.
527
539
. 10.1109/TMECH.2010.2045656
37.
Jianyu
,
Z.
,
Liyun
,
F.
, and
Hang
,
Y.
,
2017
, “
Multi-Objective Optimization Analysis of a High Speed Solenoid Valve for an Electronic Pump
,”
J. Harbin Eng. Univ.
,
38
(
4
), pp.
561
568
.
38.
Carriglio
,
M.
,
Clarich
,
A.
,
Russo
,
R.
,
Nobile
,
E.
, and
Ranut
,
P.
,
2014
, “
ModeFRONTIER for virtual design and optimization of compact heat exchangers
,” SAE Technical Paper No. 2014-01-2406.
39.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
40.
Mohiuddin
,
A. K. M.
,
Ashour
,
A. A. I. S.
, and
Shin
,
Y. H.
,
2011
, “
Design Optimization of Valve Timing at Various Engine Speeds Using Multi-Objective Genetic Algorithm (MOGA) for Design Optimization of Valve Timing at Various Engine Speeds
,”
Advanced Materials Research
,
264–265
, pp.
1719
1724
. www.scientific.net/amr.264-265.1719
41.
Feng
,
Q.
,
Cui
,
R.
,
Wang
,
S.
, and
Pinotti
,
M.
,
2019
, “
Estimation of CO2 Diffusivity in Brine by Use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041001
. 10.1115/1.4041724
42.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
, and
Pinotti
,
M.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
. 10.1115/1.4039446
43.
Giagkiozis
,
I.
, and
Fleming
,
P. J.
,
2015
, “
Methods for Multi-Objective Optimization: An Analysis
,”
Inf. Sci.
,
293
, pp.
338
350
. 10.1016/j.ins.2014.08.071
44.
Lu
,
Y.
,
Li
,
J.
,
Li
,
B.
,
Xiong
,
L.
, and
Hou
,
X.
,
2017
, “
Modeling and Synchronous Simulation of the Engine's Electro-Hydraulic Full Variable Valve System
,”
J. Harbin Eng. Univ.
,
38
(
7
), pp.
1129
1134
.
You do not currently have access to this content.