Abstract

Supercritical carbon dioxide (sCO2) Brayton cycle has been studied in recent years, and its high efficiency and environmental safety have been investigated. One of the most promising sCO2 designs is the Recompression cycle described in the Introduction of the paper. In this paper, an effort has been made to optimize the operation of a recompression cycle by performing parametric analyses on pressure ratio, split fraction, and maximum temperature. The effects of varying these parameters on thermal efficiency as well as exergetic efficiency have been determined.

References

1.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
2.
Jahar
,
S.
,
2015
, “
Review and Future Trends of Supercritical CO2 Rankine Cycle for Low-Grade Heat Conversion
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
434
451
.
3.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
4.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
5.
Bai
,
Z.
,
Zhang
,
G.
,
Li
,
Y.
,
Xu
,
G.
, and
Yang
,
Y.
,
2018
, “
A Supercritical CO2 Brayton Cycle With a Bleeding Anabranch Used in Coal-Fired Power Plants
,”
Energy
,
142
, pp.
731
738
.
6.
Xu
,
C.
,
Zhang
,
Q.
,
Yang
,
Z.
,
Li
,
X.
,
Xu
,
G.
, and
Yang
,
Y.
,
2018
, “
An Improved Supercritical Coal-Fired Power Generation System Incorporating a Supplementary Supercritical CO2 Cycle
,”
Appl. Energy
,
231
, pp.
1319
1329
.
7.
Wang
,
X.
, and
Dai
,
Y.
,
2016
, “
Exergoeconomic Analysis of Utilizing the Transcritical CO2 Cycle and the ORC for a Recompression Supercritical CO2 Cycle Waste Heat Recovery: A Comparative Study
,”
Appl. Energy
,
170
, pp.
193
207
.
8.
Kim
,
M. S.
,
Ahn
,
Y.
,
Kim
,
B.
, and
Lee
,
J. I.
,
2016
, “
Study on the Supercritical CO2 Power Cycles for Landfill Gas Firing Gas Turbine Bottoming Cycle
,”
Energy
,
111
, pp.
893
909
.
9.
Wang
,
X.
,
Wu
,
Y.
,
Wang
,
J.
,
Dai
,
Y.
, and
Xie
,
D.
,
2015
, “
Thermo-economic Analysis of a Recompression Supercritical CO2 Cycle Combined With a Transcritical CO2 Cycle
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montréal, Quebec
,
June 15–19
.
10.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.
11.
Deshmukh
,
A.
, and
Kapat
,
J.
,
2020
, “
Pinch Point Analysis of Air Cooler in Supercritical Carbon Dioxide Brayton Cycle Operating Over Ambient Temperature Range
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052104
.
12.
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070901
.
13.
Ushakov
,
V.
,
2018
,
Electrical Power Engineering: Current State, Problems and Perspectives
,
Springer
,
New York
.
14.
Xu
,
J.
,
Sun
,
E.
,
Li
,
M.
,
Liu
,
H.
, and
Zhu
,
B.
,
2018
, “
Key Issues and Solution Strategies for Supercritical Carbon Dioxide Coal Fired Power Plant
,”
Energy
,
157
, pp.
227
246
.
15.
Zhu
,
Q.
,
2017
, “
Innovative Power Generation Systems Using Supercritical CO2 Cycles
,”
Clean Energy
,
1
(
1
), pp.
68
79
.
16.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15, 2012
, pp.
967
973
.
17.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
18.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2018
, “
Effect of Mixtures on Compressor and Cooler in Supercritical Carbon Dioxide Cycles
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15, 2018
, pp.
1
10
.
19.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2014
, “
Cycle Layout Studies of S-CO2 Cycle for the Next Generation Nuclear System Application
,”
The Korean Nuclear Society Autumn Meeting
,
Pyeongchang, South Korea
,
Oct. 30–31
.
20.
Bai
,
Z.
,
Zhang
,
G.
,
Yang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102001
.
21.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
22.
Feher
,
E. G.
,
1967
, “
The Supercritical Thermodynamic Power Cycle
,”
Douglas Paper No. 4348, IECEC, Miami Beach, FL
.
23.
Angeliono
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycle for Power Production
,”
J. Eng. Power
,
90
(
3
), pp.
287
295
.
24.
Dunham
,
M.
, and
Iverson
,
B.
,
2014
, “
High-efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
758
770
.
25.
Sharma
,
O. P.
,
Kaushik
,
S. C.
, and
Manjunath
,
K.
,
2017
, “
Thermodynamic Analysis and Optimization of a Supercritical CO2 Regenerative Recompression Brayton Cycle Coupled With a Marine gas Turbine for Shipboard Waste Heat Recovery
,”
Ther. Sci. Eng. Prog.
,
3
, pp.
62
74
.
26.
Hiller
,
C. C.
,
1978
,
A Sensitivity of Brayton Cycle Power Plant Performance
,
Sandia Laboratories Energy Report (NO. SAND78-8020)
.
You do not currently have access to this content.