Abstract

The balance between supply and demand for electricity is mainly disrupted by the growing contribution of renewable energy sources to the electrical grid since these sources are intermittent by nature. Therefore, the energy storage systems, mainly those of considerable size, become essential to restore the electricity balance. The compressed air energy storage (CAES) system is one of the mature technologies used to store electricity on a large scale. Therefore, this article discusses the energy and exergy analysis of different configurations of a constant-pressure CAES system to improve its overall efficiency and energy density. The exergy efficiency of our basic adiabatic configuration using water as thermal storage medium is 56.4% and the energy density is 12.17 kWh/m3. The results show that the CAES system using a packed bed of quartzite rock as thermal storage medium has the best efficiency (67.2%) and energy density (17 kWh/m3) among adiabatic systems. The diabatic CAES systems could have a net efficiency up to 70.1% and an energy density up to 31.95 kWh/m3 by using combustion chambers. Finally, the waste heat recovery from other installations such as a gas turbine power plant has the potential to improve the energy density to 20.53 kWh/m3 without using fossil fuel sources.

References

1.
Khaitan
,
S.
, and
Raju
,
M.
,
2013
, “
Dynamic Simulation of air Storage–Based Gas Turbine Plants
,”
Int. J. Energy Res.
,
37
(
6
), pp.
558
569
. 10.1002/er.1944
2.
Zhanga
,
Y.
,
Xua
,
Y.
,
Zhoua
,
X.
,
Guoa
,
H.
,
Zhanga
,
X.
, and
Chena
,
H.
,
2019
, “
Compressed Air Energy Storage System With Variable Configuration for Accommodating Large-Amplitude Wind Power Fluctuation
,”
Appl. Energy
,
239
, pp.
957
968
. 10.1016/j.apenergy.2019.01.250
3.
Akinyele
,
D. O.
, and
Rayudu
,
R. K.
,
2014
, “
Review of Energy Storage Technologies for Sustainable Power Networks
,”
Sustainable Energy Technol. Assess.
,
8
, pp.
74
91
. 10.1016/j.seta.2014.07.004
4.
Houssainy
,
S.
,
Janbozorgi
,
M.
,
Ip
,
P.
, and
Kavehpour
,
P.
,
2018
, “
Thermodynamic Analysis of a High Temperature Hybrid Compressed Air Energy Storage (HTH-CAES) System
,”
Renewable Energy
,
115
, pp.
1043
1054
. 10.1016/j.renene.2017.09.038
5.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2017
, “
Dynamic Modeling and Simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) System
,”
J. Energy Storage
,
11
, pp.
178
190
. 10.1016/j.est.2017.03.006
6.
Kim
,
Y. M.
,
Shin
,
D. G.
, and
Favrat
,
D.
,
2011
, “
Operating Characteristics of Constant-Pressure Compressed Air Energy Storage (CAES) System Combined With Pumped Hydro Storage Based on Energy and Exergy Analysis
,”
Energy
,
36
(
10
), pp.
6220
6233
. 10.1016/j.energy.2011.07.040
7.
He
,
Q.
,
Li
,
G.
,
Lu
,
C.
,
Du
,
D.
, and
Liu
,
W.
,
2019
, “
A Compressed Air Energy Storage System With Variable Pressure Ratio and Its Operation Control
,”
Energy
,
169
, pp.
881
894
. 10.1016/j.energy.2018.12.108
8.
Cavallo
,
A.
,
2007
, “
Controllable and Affordable Utility-Scale Electricity From Intermittent Wind Resources and Compressed Air Energy Storage (CAES)
,”
Energy
,
32
(
2
), pp.
120
127
. 10.1016/j.energy.2006.03.018
9.
Lund
,
H.
, and
Salgi
,
G.
,
2009
, “
The Role of Compressed air Energy Storage (CAES) in Future Sustainable Energy Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1172
1179
. 10.1016/j.enconman.2009.01.032
10.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2017
, “
Exergy Analysis and Exergoeconomic Optimization of a Constant-Pressure Adiabatic Compressed Air Energy Storage System
,”
J. Energy Storage
,
14
, pp.
192
202
. 10.1016/j.est.2017.10.006
11.
Szablowski
,
L.
,
Krawczyk
,
P.
,
Badyda
,
K.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Bujalski
,
W.
,
2017
, “
Energy and Exergy Analysis of Adiabatic Compressed air Energy Storage System
,”
Energy
,
138
, pp.
12
18
. 10.1016/j.energy.2017.07.055
12.
Patil
,
V. C.
, and
Ro
,
P. I.
,
2018
, “
Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts
,”
J. Eng.
,
2018
, pp.
1
14
. 10.1155/2018/5254102
13.
Liu
,
H.
,
He
,
Q.
, and
Saeed
,
S. B.
,
2016
, “
Thermodynamic Analysis of a Compressed Air Energy Storage System Through Advanced Exergetic Analysis
,”
J. Renewable Sustainable Energy
,
8
, pp.
1
13
. 10.1063/1.4948515
14.
Liu
,
W.
,
Liu
,
L.
,
Zhou
,
L.
,
Huang
,
J.
,
Zhang
,
Y.
,
Xu
,
G.
, and
Yang
,
Y.
,
2014
, “
Analysis and Optimization of a Compressed Air Energy Storage-Combined Cycle System
,”
Entropy
,
16
(
6
), pp.
3103
3120
. 10.3390/e16063103
15.
Kim
,
Y. M.
,
Lee
,
J. H.
,
Kim
,
S. J.
, and
Favrat
,
D.
,
2012
, “
Potential and Evolution of Compressed Air Energy Storage: Energy and Exergy Analyses
,”
Entropy
,
14
(
8
), pp.
1501
1521
. 10.3390/e14081501
16.
Kim
,
Y.
, and
Favrat
,
D.
,
2010
, “
Energy and Exergy Analysis of a Micro-Compressed Air Energy Storage and Air Cycle Heating and Cooling System
,”
Energy
,
35
(
1
), pp.
213
220
. 10.1016/j.energy.2009.09.011
17.
Zhao
,
P.
,
Wang
,
J.
, and
Dai
,
Y.
,
2015
, “
Thermodynamic Analysis of an Integrated Energy System Based on Compressed Air Energy Storage (CAES) System and Kalina Cycle
,”
Energy Convers. Manage.
,
98
, pp.
161
172
. 10.1016/j.enconman.2015.03.094
18.
Cooper
,
J. R.
, and
Dooley
,
R. B.
,
2007
,
Guideline on an Equation of State for Humid Air in Contact With Seawater and Ice, Consistent With the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater
,
The International Association for the Properties of Water and Steam
,
Lucerne, Switzerland
.
19.
McBride
,
B. J.
,
Zehe
,
M. J.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,”
NASA
,
WA
,
NASA report TP-2002-211556
.
20.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill Education
,
New York
.
21.
Lallemand
,
A.
,
2005
, “Thermodynamique Appliquée—Bilans Entropiques et Exergétiques,”
Thermodynamique et énergétique
,
Techniques de l'ingénieur
,
INSTA Lyon
, p.
22
.
22.
Benelmir
,
A. L. R.
,
2002
, “
Analyse Exergétique
,”
Thermodynamique et énergétique
,
Techniques de l'ingénieur
,
University of Lorraine
, p.
18
.
23.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
), pp.
249
253
. 10.1016/j.energy.2006.07.002
24.
Kaiser
,
F.
, and
Krüger
,
U.
,
2019
, “
Exergy Analysis and Assessment of Performance Criteria for Compressed Air Energy Storage Concepts
,”
Int. J. Exergy
,
28
(
3
), pp.
229
254
. 10.1504/IJEX.2019.098613
25.
Zhao
,
P.
,
Gao
,
L.
,
Wang
,
J.
, and
Dai
,
Y.
,
2016
, “
Energy Efficiency Analysis and Off-Design Analysis of Two Different Discharge Modes for Compressed air Energy Storage System Using Axial Turbines
,”
Renewable Energy
,
85
, pp.
1164
1177
. 10.1016/j.renene.2015.07.095
26.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropeara
,
F.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons, Inc.
,
New York
.
27.
Zanganeh
,
G.
,
Zavattoni
,
A. P. S.
,
Barbato
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Packed-Bed Thermal Storage for Concentrated Solar Power—Pilot-Scale Demonstration and Industrial-Scale Design
,”
Sol. Energy
,
86
(
10
), pp.
3084
3098
. 10.1016/j.solener.2012.07.019
28.
Sciacovelli
,
A.
,
Li
,
Y.
,
Chen
,
H.
,
Wu
,
Y.
,
Wang
,
J.
, and
Garvey
,
S.
,
2017
, “
Dynamic Simulation of Adiabatic Compressed Air Energy Storage (A-CAES) Plant With Integrated Thermal Storage—Link Between Components Performance and Plant Performance
,”
Appl. Energy
,
185
, pp.
16
28
. 10.1016/j.apenergy.2016.10.058
29.
Mertens
,
N.
,
Alobaid
,
F.
,
Frigge
,
L.
, and
Epple
,
B.
,
2014
, “
Dynamic Simulation of Integrated Rock-Bed Thermocline Storage for Concentrated Solar Power
,”
Sol. Energy
,
110
, pp.
830
842
. 10.1016/j.solener.2014.10.021
30.
Kunii
,
D.
, and
Smith
,
J.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
A.I.Ch.E. J.
,
6
(
1
), pp.
71
78
. 10.1002/aic.690060115
31.
Meier
,
A.
,
Winkler
,
C.
, and
Wuil!emin
,
D.
,
1991
, “
Experiment for Modeling High Temperature Rock Bed Storage
,”
Solar Energy Mater.
,
24
(
1–4
), pp.
255
264
. 10.1016/0165-1633(91)90066-T
You do not currently have access to this content.