Abstract

Identification of reservoir interpretation model from pressure transient signals is a well-established technique in petroleum engineering. This technique aims to detect wellbore, reservoir, and boundary models employing an efficient matching process. The matching was first done manually; it then tried to be automated using artificial intelligence techniques. The level of uncertainty of matching outputs sharply increases, especially for noisy and incomplete signals. In this study, the pretrained GoogleNet (a novel combination of continuous wavelet transforms and deep convolutional neural networks) is used to decrease the uncertainty of matching results. Based on our best knowledge, it is the first application of GoogleNet to analyze transient signals in petroleum engineering. This technique is used to classify a relatively huge database, including synthetic, noisy, incomplete, and real-field signals. The GoogleNet can correctly discriminate among different reservoir interpretation classes with an overall classification accuracy of 98.36%. Moreover, it can successfully handle noisy, incomplete, and real-field pressure transient signals.

References

1.
Cheng
,
X.
,
He
,
L.
,
Lu
,
H.
,
Chen
,
Y.
, and
Ren
,
L.
,
2016
, “
Optimal Water Resources Management and System Benefit for the Marcellus Shale-Gas Reservoir in Pennsylvania and West Virginia
,”
J. Hydrol.
,
540
, pp.
412
422
.
2.
Chen
,
Y.
,
He
,
L.
,
Li
,
J.
, and
Zhang
,
S.
,
2018
, “
Multi-Criteria Design of Shale-Gas-Water Supply Chains and Production Systems Towards Optimal Life Cycle Economics and Greenhouse Gas Emissions Under Uncertainty
,”
Comput. Chem. Eng.
,
109
, pp.
216
235
.
3.
Chen
,
Y.
,
He
,
L.
,
Guan
,
Y.
,
Lu
,
H.
, and
Li
,
J.
,
2017
, “
Life Cycle Assessment of Greenhouse Gas Emissions and Water-Energy Optimization for Shale Gas Supply Chain Planning Based on Multi-Level Approach: Case Study in Barnett, Marcellus, Fayetteville, and Haynesville Shales
,”
Energy Convers. Manag.
,
134
, pp.
382
398
.
4.
Alam
,
Z.
,
Sun
,
L.
,
Zhang
,
C.
,
Su
,
Z.
, and
Samali
,
B.
,
2021
, “
Experimental and Numerical Investigation on the Complex Behaviour of the Localised Seismic Response in a Multi-Storey Plan-Asymmetric Structure
,”
Struct. Infrastruct. Eng.
,
17
(
1
), pp.
86
102
.
5.
Alam
,
Z.
,
Zhang
,
C.
, and
Samali
,
B.
,
2020
, “
Influence of Seismic Incident Angle on Response Uncertainty and Structural Performance of Tall Asymmetric Structure
,”
Struct. Des. Tall Spec. Build.
,
29
(
12
), p.
e1750
.
6.
Alam
,
Z.
,
Zhang
,
C.
, and
Samali
,
B.
,
2020
, “
The Role of Viscoelastic Damping on Retrofitting Seismic Performance of Asymmetric Reinforced Concrete Structures
,”
Earthq. Eng. Eng. Vib.
,
19
(
1
), pp.
223
237
.
7.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
8.
Yang
,
Y.
,
Yao
,
J.
,
Wang
,
C.
,
Gao
,
Y.
,
Zhang
,
Q.
,
An
,
S.
, and
Song
,
W.
,
2015
, “
New Pore Space Characterization Method of Shale Matrix Formation by Considering Organic and Inorganic Pores
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
496
503
.
9.
Zhao
,
X.
,
Yang
,
Z.
,
Lin
,
W.
,
Xiong
,
S.
,
Luo
,
Y.
,
Wang
,
Z.
,
Chen
,
T.
,
Xia
,
D.
, and
Wu
,
Z.
,
2019
, “
Study on Pore Structures of Tight Sandstone Reservoirs Based on Nitrogen Adsorption, High-Pressure Mercury Intrusion, and Rate-Controlled Mercury Intrusion
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112903
.
10.
Zha
,
W.
,
Li
,
X.
,
Li
,
D.
,
Xing
,
Y.
,
He
,
L.
, and
Tan
,
J.
,
2021
, “
Shale Digital Core Image Generation Based on Generative Adversarial Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033003
.
11.
Song
,
S.
,
Shi
,
B.
,
Yu
,
W.
,
Ding
,
L.
,
Liu
,
Y.
,
Li
,
W.
, and
Gong
,
J.
,
2020
, “
Study on the Optimization of Hydrate Management Strategies in Deepwater Gas Well Testing Operations
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033002
.
12.
Ren
,
J.
,
Gao
,
Y.
,
Zheng
,
Q.
, and
Wang
,
D.
,
2020
, “
Pressure Transient Analysis for a Finite-Conductivity Fractured Vertical Well Near a Leaky Fault in Anisotropic Linear Composite Reservoirs
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
073002
.
13.
Zhang
,
Q.
,
Wang
,
D.
,
Zeng
,
F.
,
Guo
,
Z.
, and
Wei
,
N.
,
2020
, “
Pressure Transient Behaviors of Vertical Fractured Wells With Asymmetric Fracture Patterns
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
043001
.
14.
Wang
,
L.
, and
Wang
,
X.
,
2014
, “
Type Curves Analysis for Asymmetrically Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023101
.
15.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2011
, “
Automatic Recognition of Oil Reservoir Models From Well Testing Data by Using Multi-Layer Perceptron Networks
,”
J. Pet. Sci. Eng.
,
77
(
3–4
), pp.
254
262
.
16.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2015
, “
Application of Recurrent Networks to Classification of Oil Reservoir Models in Well-Testing Analysis
,”
Energy Sources, Part A
,
37
(
2
), pp.
174
180
.
17.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ghaffarian
,
N.
,
2016
, “
Hydrocarbon Reservoir Model Detection From Pressure Transient Data Using Coupled Artificial Neural Network-Wavelet Transform Approach
,”
Appl. Soft Comput. J.
,
47
, pp.
63
75
.
18.
Moghimihanjani
,
M.
, and
Vaferi
,
B.
,
2020
, “
A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013001
.
19.
Cheng
,
Y.
,
Lee
,
W. J.
, and
McVay
,
D. A.
,
2011
, “
Advanced Deconvolution Technique for Analyzing Multirate Well Test Data
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012901
.
20.
Mousavi
,
A. A.
,
Zhang
,
C.
,
Masri
,
S. F.
, and
Gholipour
,
G.
,
2020
, “
Structural Damage Localization and Quantification Based on a Ceemdan Hilbert Transform Neural Network Approach: A Model Steel Truss Bridge Case Study
,”
Sensors
,
20
(
5
), p.
1271
.
21.
Ahmadi
,
R.
,
Aminshahidy
,
B.
, and
Shahrabi
,
J.
,
2017
, “
Well-Testing Model Identification Using Time-Series Shapelets
,”
J. Pet. Sci. Eng.
,
149
, pp.
292
305
.
22.
Ahmadi
,
R.
,
Shahrabi
,
J.
, and
Aminshahidy
,
B.
,
2017
, “
Automatic Well-Testing Model Diagnosis and Parameter Estimation Using Artificial Neural Networks and Design of Experiments
,”
J. Pet. Explor. Prod. Technol.
,
7
(
3
), pp.
759
783
.
23.
Von Schroeter
,
T.
,
Hollaender
,
F.
, and
Gringarten
,
A. C.
,
2004
, “
Deconvolution of Well-Test Data as a Nonlinear Total Least-Squares Problem
,”
SPE J.
,
9
(
4
), pp.
375
390
.
24.
Onur
,
M.
, and
Kuchuk
,
F. J.
,
2012
, “
A New Deconvolution Technique Based on Pressure-Derivative Data for Pressure-Transient-Test Interpretation
,”
SPE J.
,
17
(
1
), pp.
307
320
.
25.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2015
, “
Hydrocarbon Reservoirs Characterization by Co-Interpretation of Pressure and Flow Rate Data of the Multi-Rate Well Testing
,”
J. Pet. Sci. Eng.
,
135
, pp.
59
72
.
26.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2016
, “
Characterization of Gas/Gas Condensate Reservoirs by Deconvolution of Multirate Well Test Data
,”
J. Porous Media
,
19
(
12
), pp.
1061
1081
.
27.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2018
, “
Characterisation of Hydrocarbon Reservoirs by Analysing Deconvolved Impulse Response
,”
Int. J. Oil, Gas Coal Technol.
,
17
(
2
), pp.
129
142
.
28.
Shiqian
,
X.
,
Yuyao
,
L.
,
Yu
,
Z.
,
Sen
,
W.
, and
Qihong
,
F.
,
2020
, “
A History Matching Framework to Characterize Fracture Network and Reservoir Properties in Tight Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042902
.
29.
Yang
,
R.
,
Jiang
,
R.
,
Patil
,
S.
,
Liu
,
S.
,
Gao
,
Y.
,
Chen
,
H.
, and
Sun
,
Z.
,
2019
, “
Comprehensive Well Test Interpretation Method, Process, and Multiple Solutions Analysis for Complicated Carbonate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122906
.
30.
Dung
,
C. V.
, and
Anh
,
L. D.
,
2019
, “
Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network
,”
Autom. Constr.
,
99
, pp.
52
58
.
31.
Qian
,
J.
,
Feng
,
S.
,
Li
,
Y.
,
Tao
,
T.
,
Han
,
J.
,
Chen
,
Q.
, and
Zuo
,
C.
,
2020
, “
Single-Shot Absolute 3D Shape Measurement With Deep-Learning-Based Color Fringe Projection Profilometry
,”
Opt. Lett.
,
45
(
7
), pp.
1842
1845
.
32.
Zhang
,
K.
,
Zhang
,
J.
,
Ma
,
X.
,
Yao
,
C.
,
Zhang
,
L.
,
Yang
,
Y.
,
Wang
,
J.
,
Yao
,
J.
, and
Zhao
,
H.
,
2021
, “
History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder
,”
SPE J.
,
2021
(
1
), pp.
1
22
.
33.
Li
,
T.
,
Xu
,
M.
,
Zhu
,
C.
,
Yang
,
R.
,
Wang
,
Z.
, and
Guan
,
Z.
,
2019
, “
A Deep Learning Approach for Multi-Frame In-Loop Filter of HEVC
,”
IEEE Trans. Image Process.
,
28
(
11
), pp.
5663
5678
.
34.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
.
35.
He
,
S.
,
Guo
,
F.
,
Zou
,
Q.
, and
Ding
,
H.
,
2020
, “
MRMD2.0: A Python Tool for Machine Learning With Feature Ranking and Reduction
,”
Curr. Bioinform.
,
15
(
1
), pp.
1
9
.
36.
Yu
,
X.
,
Wang
,
S.-H.
,
Zhang
,
X.
, and
Zhang
,
Y.-D.
,
2020
, “
Detection of COVID-19 by GoogLeNet-COD
,”
International Conference on Intelligent Computing
,
Dubai, UAE
,
Dec.6–8
.
37.
Kalaiarasi
,
P.
, and
Rani
,
P. E.
,
2020
,
Advances in Smart System Technologies
,
P.
Suresh
,
U.
Saravanakumar
, and
M.
Hussein Al Salameh
, eds.,
Springer
,
New York
, pp.
655
668
.
38.
Baraboshkin
,
E. E.
,
Ismailova
,
L. S.
,
Orlov
,
D. M.
,
Zhukovskaya
,
E. A.
,
Kalmykov
,
G. A.
,
Khotylev
,
O. V.
,
Baraboshkin
,
E. Y.
, and
Koroteev
,
D. A.
,
2020
, “
Deep Convolutions for In-Depth Automated Rock Typing
,”
Comput. Geosci.
,
135
, p.
104330
.
39.
Vaferi
,
B.
,
Salimi
,
V.
,
Dehghan Baniani
,
D.
,
Jahanmiri
,
A.
, and
Khedri
,
S.
,
2012
, “
Prediction of Transient Pressure Response in the Petroleum Reservoirs Using Orthogonal Collocation
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
156
163
.
40.
Nategh
,
M.
,
Vaferi
,
B.
, and
Riazi
,
M.
,
2019
, “
Orthogonal Collocation Method for Solving the Diffusivity Equation: Application on Dual Porosity Reservoirs With Constant Pressure Outer Boundary
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042001
.
41.
Moosavi
,
S. R.
,
Vaferi
,
B.
, and
Wood
,
D. A.
,
2018
, “
Applying Orthogonal Collocation for Rapid and Reliable Solutions of Transient Flow in Naturally Fractured Reservoirs
,”
J. Pet. Sci. Eng.
,
162
, pp.
166
179
.
42.
Coutinho
,
R. P.
,
Tornisiello
,
L.
, and
Waltrich
,
P. J.
,
2020
, “
Experimental Investigation of Vertical Downward Two-Phase Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072102
.
43.
Jreij
,
S. F.
,
Trainor-Guitton
,
W. J.
,
Morphew
,
M.
, and
Chen Ning
,
I. L.
,
2020
, “
The Value of Information From Horizontal Distributed Acoustic Sensing Compared to Multicomponent Geophones via Machine Learning
,”
SEG Technical Program Expanded Abstracts 2020
.
44.
Chen
,
Y.
,
Li
,
J.
,
Lu
,
H.
, and
Yan
,
P.
,
2021
, “
Coupling System Dynamics Analysis and Risk Aversion Programming for Optimizing the Mixed Noise-Driven Shale Gas-Water Supply Chains
,”
J. Clean. Prod.
,
278
, p.
123209
.
45.
Yang
,
J.
,
Li
,
S.
,
Wang
,
Z.
,
Dong
,
H.
,
Wang
,
J.
, and
Tang
,
S.
,
2020
, “
Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges
,”
Materials
,
13
(
24
), p.
5755
.
46.
Horne
,
R. N.
,
1995
,
Modern Well Test Analysis
,
Petrow Inc.
,
Palo Alto, CA
.
47.
Bourdet
,
D.
,
Ayoub
,
J. A.
, and
Pirard
,
Y. M.
,
1989
, “
Use of Pressure Derivative in Well Test Interpretation
,”
SPE Form. Eval.
,
4
(
2
), pp.
293
302
.
48.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
You do not currently have access to this content.