Abstract

The intermittent and fluctuating nature of solar energy is the biggest challenge facing its widespread utilization. Implementing onsite photovoltaic (PV) systems as alternative energy sources has established the need for reliable forecasting procedures to improve scheduling and demand management. This paper presents solar energy forecasting combined with a demand-side prediction algorithm to optimize the utilization of available solar energy resources and manage the demand side accordingly. The algorithm utilizes support vector regression (SVR), a machine learning technique, validated using one-year energy consumption data collected from an office building instrumented as an experimental testbed facility. Power meters and temperature sensors collect the building’s internal climate and energy data, while a solar PV array and a weather station provide the external relevant data. The forecasting method uses the average power output of k-similar days as an added input to the SVR model to enhance its performance. The day-ahead prediction results show that this additional input contributes to higher forecasting efficiency, especially in the hot climate regions, where sunny weather conditions prevail throughout the year. The PV output prediction accuracy for sunny days is above 90%, which offers possibilities for optimized scheduling and leading to smart building energy management. Finally, this paper also proposes a temperature set point optimization algorithm for the building air conditioning system to minimize the difference between the building energy load and the generated solar PV power. Using 24 °C as the upper set point temperature limit reduces the energy demand (consumption) by up to 29% and the associated reduction in CO2 emissions.

References

1.
Zambrano
,
A. F.
, and
Giraldo
,
L. F.
,
2020
, “
Solar Irradiance Forecasting Models Without On-Site Training Measurements
,”
Renew. Energy
,
152
, pp.
557
566
.
2.
Sobri
,
S.
,
Koohi-Kamali
,
S.
, and
Rahim
,
N. A.
,
2018
, “
Solar Photovoltaic Generation Forecasting Methods: A Review
,”
Energy Convers. Manage.
,
156
, pp.
459
497
.
3.
Voyant
,
C.
,
Notton
,
G.
,
Kalogirou
,
S.
,
Nivet
,
M.-L.
,
Paoli
,
C.
,
Motte
,
F.
, and
Fouilloy
,
A.
,
2017
, “
Machine Learning Methods for Solar Radiation Forecasting: A Review
,”
Renew. Energy
,
105
, pp.
569
582
.
4.
Agüera-Pérez
,
A.
,
Palomares-Salas
,
J. C.
,
González de la Rosa
,
J. J.
, and
Florencias-Oliveros
,
O.
,
2018
, “
Weather Forecasts for Microgrid Energy Management: Review, Discussion and Recommendations
,”
Appl. Energy
,
228
, pp.
265
278
.
5.
Qazi
,
A.
,
Fayaz
,
H.
,
Wadi
,
A.
,
Raj
,
R. G.
,
Rahim
,
N.
, and
Khan
,
W. A.
,
2015
, “
The Artificial Neural Network for Solar Radiation Prediction and Designing Solar Systems: A Systematic Literature Review
,”
J. Cleaner Prod.
,
104
, pp.
1
12
.
6.
Antonanzas
,
J.
,
Osorio
,
N.
,
Escobar
,
R.
,
Urraca
,
R.
,
de Pison
,
F. M.
, and
Antonanzas-Torres
,
F.
,
2016
, “
Review of Photovoltaic Power Forecasting
,”
Sol. Energy
,
136
, pp.
78
111
.
7.
Das
,
U. K.
,
Tey
,
K. S.
,
Seyedmahmoudian
,
M.
,
Mekhilef
,
S.
,
Idris
,
M. Y. I.
,
Van Deventer
,
W.
,
Horan
,
B.
, and
Stojcevski
,
A.
,
2018
, “
Forecasting of Photovoltaic Power Generation and Model Optimization: A Review
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
912
928
.
8.
Yadav
,
A. K.
, and
Chandel
,
S.
,
2014
, “
Solar Radiation Prediction Using Artificial Neural Network Techniques: A Review
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
772
781
.
9.
Özge
,
A.
, and
Ümmühan
,
B. F.
,
2018
, “
Estimation Methods of Global Solar Radiation, Cell Temperature and Solar Power Forecasting: A Review and Case Study in Eskişehir
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
639
653
.
10.
Zendehboudi
,
A.
,
Baseer
,
M.
, and
Saidur
,
R.
,
2018
, “
Application of Support Vector Machine Models for Forecasting Solar and Wind Energy Resources: A Review
,”
J. Cleaner Prod.
,
199
, pp.
272
285
.
11.
Huang
,
C. M.
,
Huang
,
Y. C.
, and
Huang
,
K. Y.
,
2014
, “
A Hybrid Method for One-Day Ahead Hourly Forecasting of PV Power Output
,”
2014 9th IEEE Conference on Industrial Electronics and Applications
,
Hangzhou, China
,
June 9–11
, pp.
526
531
.
12.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
2
(
1
), pp.
2
10
.
13.
Raza
,
M. Q.
,
Nadarajah
,
M.
, and
Ekanayake
,
C.
,
2016
, “
On Recent Advances in PV Output Power Forecast
,”
Sol. Energy
,
136
, pp.
125
144
.
14.
Huang
,
C.
,
Chen
,
S.-J.
,
Yang
,
S.-P.
, and
Kuo
,
C.-J.
,
2015
, “
One-Day-Ahead Hourly Forecasting for Photovoltaic Power Generation Using an Intelligent Method With Weather-Based Forecasting Models
,”
IET Gener. Transm. Distrib.
,
9
, pp.
1874
1882
.
15.
Rozas Larraondo
,
P.
,
Inza
,
I.
, and
Lozano
,
J. A.
,
2018
, “
A System for Airport Weather Forecasting Based on Circular Regression Trees
,”
Environ. Model. Softw.
,
100
, pp.
24
32
.
16.
Qing
,
X.
, and
Niu
,
Y.
,
2018
, “
Hourly Day-Ahead Solar Irradiance Prediction Using Weather Forecasts by LSTM
,”
Energy
,
148
, pp.
461
468
.
17.
Akarslan
,
E.
, and
Hocaoglu
,
F. O.
,
2017
, “
A Novel Method Based on Similarity for Hourly Solar Irradiance Forecasting
,”
Renew. Energy
,
112
, pp.
337
346
.
18.
Gigoni
,
L.
,
Betti
,
A.
,
Crisostomi
,
E.
,
Franco
,
A.
,
Tucci
,
M.
,
Bizzarri
,
F.
, and
Mucci
,
D.
,
2018
, “
Day-Ahead Hourly Forecasting of Power Generation From Photovoltaic Plants
,”
IEEE Trans. Sustain. Energy
,
9
(
2
), pp.
831
842
.
19.
Semero
,
Y. K.
,
Zhang
,
J.
, and
Zheng
,
D.
,
2018
, “
PV Power Forecasting Using an Integrated GA-PSO-ANFIS Approach and Gaussian Process Regression Based Feature Selection Strategy
,”
CSEE J. Power Energy Syst.
,
4
(
2
), pp.
210
218
.
20.
Zhang
,
Y.
,
Beaudin
,
M.
,
Taheri
,
R.
,
Zareipour
,
H.
, and
Wood
,
D.
,
2015
, “
Day-Ahead Power Output Forecasting for Small-Scale Solar Photovoltaic Electricity Generators
,”
IEEE Trans. Smart Grid
,
6
(
5
), pp.
2253
2262
.
21.
Yildiz
,
B.
,
Bilbao
,
J.
, and
Sproul
,
A.
,
2017
, “
A Review and Analysis of Regression and Machine Learning Models on Commercial Building Electricity Load Forecasting
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
1104
1122
.
22.
Zhao
,
Z.
,
Houchati
,
M.
, and
Beitelmal
,
A.
,
2017
, “
An Energy Efficiency Assessment of the Thermal Comfort in an Office Building
,”
Energy Procedia
,
134
, pp.
885
893
[
Sustainability in Energy and Buildings 2017: Proceedings of the Ninth KES International Conference
,
Chania, Greece
,
Jul. 5–7
].
23.
Gu
,
B.
,
Sheng
,
V. S.
,
Tay
,
K. Y.
,
Romano
,
W.
, and
Li
,
S.
,
2015
, “
Incremental Support Vector Learning for Ordinal Regression
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
26
(
7
), pp.
1403
1416
.
24.
Zhang
,
H.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2015
, “
Energy-Efficient Scheduling of Multiple Manufacturing Factories Under Real-Time Electricity Pricing
,”
CIRP Ann.
,
64
(
1
), pp.
41
44
.
25.
Freitag
,
M.
, and
Hildebrandt
,
T.
,
2016
, “
Automatic Design of Scheduling Rules for Complex Manufacturing Systems by Multi-Objective Simulation-Based optimization
,”
CIRP Ann.
,
65
(
1
), pp.
433
436
.
26.
Zhai
,
Y.
,
Biel
,
K.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2017
, “
Dynamic Scheduling of a Flow Shop With On-Site Wind Generation for Energy Cost Reduction Under Real Time Electricity Pricing
,”
CIRP Ann.
,
66
(
1
), pp.
41
44
.
You do not currently have access to this content.