Abstract

This article presents the computational optimization of a spark ignition engine fueled with biomass-derived syngas. KIVA 4 is used as simulation platform, where a three-dimensional model is implemented considering the valve system together with the intake and exhaust processes. For the optimization, a subroutine is developed that couples KIVA 4 with the nondominated sorting genetic algorithm II. Two optimization processes are performed, one at 2500 rpm and the other at 4500 rpm. In both cases, the aim is to optimize the equivalence ratio in the combustion chamber, with the objectives of maximizing the indicated thermal efficiency and minimizing the nitrogen monoxide emission. From the results, it can be deduced that the performance of the engine presents its optimum values for mixtures close to stoichiometry; however, these individuals also exhibit the highest nitrogen monoxide emissions. At both 2500 rpm and 4500 rpm, it was possible to find equivalence ratios that allow obtaining efficiencies greater than those achieved in the conventional operation of the engine, that is, when it is fueled with gasoline.

References

1.
Bates
,
R. P.
, and
Dölle
,
K.
,
2017
, “
Syngas Use in Internal Combustion Engines—A Review
,”
Adv. Res.
,
10
(
1
), pp.
1
8
.
2.
Herdem
,
M. S.
,
Lorena
,
G.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined Power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
.
3.
Lin
,
J. C. M.
,
2007
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
4.
Wei
,
L.
,
Li
,
X.
,
Yang
,
W.
,
Dai
,
Y.
, and
Wang
,
C. H.
,
2020
, “
Optimization of Operation Strategies of a Syngas-Fueled Engine in a Distributed Gasifier-Generator System Driven by Horticulture Waste
,”
Energy Convers. Manage.
,
208
, p.
112580
.
5.
Banke
,
K.
,
Hegner
,
R.
,
Schröder
,
D.
,
Schulz
,
C.
,
Atakan
,
B.
, and
Kaiser
,
S. A.
,
2019
, “
Power and Syngas Production From Partial Oxidation of Fuel-Rich Methane/DME Mixtures in an HCCI Engine
,”
Fuel
,
243
, pp.
97
103
.
6.
Fiore
,
M.
,
Magi
,
V.
, and
Viggiano
,
A.
,
2020
, “
Internal Combustion Engines Powered by Syngas: A Review
,”
Appl. Energy
,
276
, p.
115415
.
7.
Costa
,
M.
,
La Villetta
,
M.
,
Massarotti
,
N.
,
Piazzullo
,
D.
, and
Rocco
,
V.
,
2017
, “
Numerical Analysis of a Compression Ignition Engine Powered in the Dual-Fuel Mode With Syngas and Biodiesel
,”
Energy
,
137
, pp.
969
979
.
8.
Nayak
,
C.
,
Pattanaik
,
B. P.
, and
Panda
,
J. K.
,
2021
, “
Trade-Off Study on Economy and Environmental Aspects of a Dual Fuel Diesel Engine Using Diesel Additive and Producer Gas
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032306
.
9.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2021
, “
A Numerical Study to Control the Combustion Performance of a Syngas-Fueled HCCI Engine at Medium and High Loads Using Different Piston Bowl Geometry and Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082301
.
10.
Dhahak
,
A.
,
Bounaceur
,
R.
,
Le Dreff-Lorimier
,
C.
,
Schmidt
,
G.
,
Trouve
,
G.
, and
Battin-Leclerc
,
F.
,
2019
, “
Development of a Detailed Kinetic Model for the Combustion of Biomass
,”
Fuel
,
242
, pp.
756
774
.
11.
Pérez Gordillo
,
D. S.
, and
Mantilla González
,
J. M.
,
2022
, “
Computational Study of the Effects of Ignition Parameters Changes on a Spark Ignition Engine Fueled With Syngas
,”
ASME J. Energy Resour. Technol.
, 144(11), p.
112306
.
12.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
,
Li
,
B.
, and
Li
,
Q.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082304
.
13.
Tsiakmakis
,
S.
,
Mertzis
,
D.
,
Dimaratos
,
A.
,
Toumasatos
,
Z.
, and
Samaras
,
Z.
,
2014
, “
Experimental Study of Combustion in a Spark Ignition Engine Operating With Producer Gas From Various Biomass Feedstocks
,”
Fuel
,
122
, pp.
126
139
.
14.
Arroyo
,
J.
,
Moreno
,
F.
,
Muñoz
,
M.
,
Monné
,
C.
, and
Bernal
,
N.
,
2014
, “
Combustion Behavior of a Spark Ignition Engine Fueled With Synthetic Gases Derived From Biogas
,”
Fuel
,
117
(
PART A
), pp.
50
58
.
15.
Bhaduri
,
S.
,
Berger
,
B.
,
Pochet
,
M.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2017
, “
HCCI Engine Operated With Unscrubbed Biomass Syngas
,”
Fuel Process. Technol.
,
157
, pp.
52
58
.
16.
Przybyla
,
G.
,
Szlek
,
A.
,
Haggith
,
D.
, and
Sobiesiak
,
A.
,
2016
, “
Fuelling of Spark Ignition and Homogenous Charge Compression Ignition Engines With Low Calorific Value Producer Gas
,”
Energy
,
116
(
3
), pp.
1464
1478
.
17.
Costa
,
M.
,
Di Blasio
,
G.
,
Prati
,
M. V.
,
Costagliola
,
M. A.
,
Cirillo
,
D.
,
La Villetta
,
M.
,
Caputo
,
C.
, and
Martoriello
,
G.
,
2020
, “
Multi-Objective Optimization of a Syngas Powered Reciprocating Engine Equipping a Combined Heat and Power Unit
,”
Appl. Energy
,
275
, pp.
115418
.
18.
Jabbr
,
A. I.
,
Gaja
,
H.
, and
Koylu
,
U. O.
,
2020
, “
Multi-objective Optimization of Operating Parameters for a H2/Diesel Dual-Fuel Compression-Ignition Engine
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19965
19975
.
19.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2021
, “
A Comparative Numerical Study of the Combustion Performance of the Syngas-Fueled HCCI Engine Using a Toroidal Piston, Square Bowl Piston, and Flat Piston Shape at Different Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072305
.
20.
Rahnama
,
P.
,
Arab
,
M.
, and
Reitz
,
R. D.
,
2020
, “
A Time-Saving Methodology for Optimizing a Compression Ignition Engine to Reduce Fuel Consumption Through Machine Learning
,”
SAE Int. J. Engines
,
13
(
2
), pp.
267
288
.
21.
Lee
,
S.
, and
Park
,
S.
,
2017
, “
Optimization of the Piston Bowl Geometry and the Operating Conditions of a Gasoline-Diesel Dual-Fuel Engine Based on a Compression Ignition Engine
,”
Energy
,
121
, pp.
433
448
.
22.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
23.
Liu
,
J.
,
Wang
,
J.
, and
Zhao
,
H.
,
2018
, “
Optimization of the Injection Parameters and Combustion Chamber Geometries of a Diesel/Natural Gas RCCI Engine
,”
Energy
,
164
, pp.
837
852
.
24.
Liu
,
J.
,
Ma
,
B.
,
Yu
,
R.
, and
Guo
,
Q.
,
2020
, “
Optimization of the Direct Injection Natural Gas Engine Under Different Combustion Modes
,”
Fuel
,
272
, p.
117699
.
25.
Motlagh
,
T. Y.
,
Azadani
,
L. N.
, and
Yazdani
,
K.
,
2020
, “
Multi-Objective Optimization of Diesel Injection Parameters in a Natural Gas/Diesel Reactivity Controlled Compression Ignition Engine
,”
Appl. Energy
,
279
, p.
115746
.
26.
Rinaldini
,
C. A.
,
Allesina
,
G.
,
Pedrazzi
,
S.
,
Mattarelli
,
E.
, and
Tartarini
,
P.
,
2019
, “
Modeling and Optimization of Industrial Internal Combustion Engines Running on Diesel/Syngas Blends
,”
Energy Convers. Manage.
,
182
, pp.
89
94
.
27.
Xu
,
Z.
,
Jia
,
M.
,
Li
,
Y.
,
Chang
,
Y.
,
Xu
,
G.
,
Xu
,
L.
, and
Lu
,
X.
,
2018
, “
Computational Optimization of Fuel Supply, Syngas Composition, and Intake Conditions for a Syngas/Diesel RCCI Engine
,”
Fuel
,
234
, pp.
120
134
.
28.
Wen
,
G. H.
,
Yu
,
S.
, and
Reitz
,
R.
,
2011
,
Computational Optimization of Internal Combustion Engines
,
Springer
,
New York
.
29.
Marculescu
,
C.
,
Cenuşă
,
V.
, and
Alexe
,
F.
,
2016
, “
Analysis of Biomass and Waste Gasification Lean Syngases Combustion for Power Generation Using Spark Ignition Engines
,”
Waste Manage.
,
47
(
Part A
), pp.
133
140
.
30.
Martinez-Boggio
,
S. D.
,
Merola
,
S. S.
,
Teixeira Lacava
,
P.
,
Irimescu
,
A.
, and
Curto-Risso
,
P. L.
,
2019
, “
Effect of Fuel and air Dilution on Syngas Combustion in an Optical SI Engine
,”
Energies
,
12
(
8
), p.
1566
.
31.
Krishnamoorthi
,
M.
,
Sreedhara
,
S.
, and
Prakash Duvvuri
,
P.
,
2020
, “
Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled With Syngas and Biodiesel/Diesel Blends
,”
Appl. Energy
,
263
, p.
114643
.
32.
Kosmadakis
,
G. M.
,
Rakopoulos
,
D. C.
, and
Rakopoulos
,
C. D.
,
2015
, “
Investigation of Nitric Oxide Emission Mechanisms in a SI Engine Fueled With Methane/Hydrogen Blends Using a Research CFD Code
,”
Int. J. Hydrogen Energy
,
40
(
43
), pp.
15088
15104
.
33.
Wang
,
Z.
,
Zhou
,
Y.
,
Whiddon
,
R.
,
He
,
Y.
,
Cen
,
K.
, and
Li
,
Z.
,
2016
, “
Investigation of NO Formation in Premixed Adiabatic Laminar Flames of H2/CO Syngas and Air by Saturated Laser-Induced Fluorescence and Kinetic Modeling
,”
Combust. Flame
,
164
, pp.
283
293
.
34.
Pérez Gordillo
,
D. S.
,
2019
, “
Estudio Computacional de la Combustión Premezclada de un gas Producto de la Gasificación de Biomasa en un Motor de Combustión Interna (MCI)
,”
Tesis de Maestría en Ingeniería Mecánica
,
Universidad Nacional de Colombia
,
sede Bogotá
.
35.
Saeed
,
K.
,
2016
, “
Modelling of Oxide of Nitrogen Formation in a Lean Burn Premixed Charge Stirred Chemical Reactor Based Engines
,”
J. Energy Inst.
,
89
(
4
), pp.
513
524
.
36.
Nadaleti
,
W. C.
, and
Przybyla
,
G.
,
2020
, “
NOX, CO and HC Emissions and Thermodynamic-Energetic Efficiency of an SI Gas Engine Powered by Gases Simulated From Biomass Gasification Under Different H2 Content
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
21920
21939
.
37.
Zhang
,
Y.
, and
Liu
,
Y.
,
2017
, “
Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation
,”
Front. Energy Res.
,
5
, p.
Article 31
.
38.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
39.
Caputo
,
Carmine
,
Cirillo
,
Domenico
,
Costa
,
Michela
,
Di Blasio
,
Gabriele
,
Di Palma
,
Maria
,
Piazzullo
,
Daniele
, and
Vujanović
,
Milan
,
2019
, “
Multi-Level Modeling of Real Syngas Combustion in a Spark Ignition Engine and Experimental Validation
,”
SAE Technical Papers
.
40.
Barrera
,
C.
,
Pérez
,
D.
,
Forigua
,
C.
, and
Mantilla
,
J.
,
2021
, “
Open Source Extensions Applied to Meshing Problems for KIVA 4
,”
Int. J. Appl. Sci. Eng.
,
18
(
1
), p.
2020135
.
41.
Amsden
,
A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines With Vertical or Canted Valves
,”
Tech. Rep. No. LA-13313MS
, Los Alamos Natl. Lab., Las Alamos, NM.
42.
Lombardini a Kohler Company
, “
Lombardini LGW-523-MPI engine Datasheet
,” Cod. 3558223-11-2008.
43.
Battistoni
,
M.
,
Mariani
,
F.
,
Risi
,
F.
, and
Poggiani
,
C.
,
2015
, “
Combustion CFD Modeling of a Spark Ignited Optical Access Engine Fueled With Gasoline and Ethanol
,”
Energy Procedia
,
82
, pp.
424
431
.
44.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,” SAE Technical Papers,
45.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2013
, “
An Investigation of Grid Convergence for Spray Simulations Using an LES Turbulence Model
,” SAE Technical Papers, vol.
2
.
46.
Amsden
,
A.
,
1989
, “
KIVA-2: A Computer Program for Chemically Reactive Flows With Sprays
,”
Los Alamos Natl. Lab
, Technical Report.
47.
Holst
,
M. J.
,
1992
, “
Notes on the KIVA-2 Software and Chemically Reactive Fluid Mechanics
,”
Numer. Math. Gr. Comput. Math. Res. Div. Lawrence Livermore Natl. Lab
.
48.
Torres
,
D. J.
, and
Trujillo
,
M. F.
,
2006
, “
KIVA-4: An Unstructured ALE Code for Compressible Gas Flow With Sprays
,”
J. Comput. Phys.
,
219
(
2
), pp.
943
975
.
49.
Forigua
,
C.
,
2015
, “
Desarrollo Software de un Módulo de Cinética Química en Fase Gaseosa Para Simulación 3D de Motores de Combustión Interna
,”
Tesis de Maestría en Ingeniería Mecánica
,
Universidad Nacional de Colombia
,
Sede Bogotá
.
50.
Turns
,
S.
,
2000
,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
51.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.
52.
Czerwinski
,
J.
,
Güdel
,
M.
, and
Engelmann
,
D.
,
2018
, “
Combustion and Emissions of a Small SI Engine With Buthanol Blend Fuels
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
421
(
4
), p.
042012
.
53.
Goldberg
,
D.
,
1989
,
Genetic Algorithms for Search, Optimization, and Machine Learning
,
Addison-Wesley Professional
,
Boston, MA
.
54.
Zitzler
,
E.
, and
Thiele
,
L.
,
1998
, “
Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study
,”
Lecture Notes in Computer Science
, vol.
1498
, LNCS, pp.
292
301
.
55.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
56.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.