Abstract

This review overviews combustion technologies for reduced emissions and better fuel economy in the industrial gas turbine. Lean premixed combustion (LPM) technology is introduced as a low-temperature combustion technique to control NOx emissions. The dry low NOx (DLN) is one of the most promising LPM-based combustors for controlling NOx emissions. However, DLN combustors suffer from limited flame stability, especially under low load (near blowout) operating conditions, in addition to the difficulty of separating CO2 from the exhaust stream for reducing the gas-turbine carbon footprint. Trying to overcome such difficulties, the gas turbine manufacturers developed enhanced-design burners for higher turndown and lower NOx emissions, including the Dual Annular Counter Rotating Swirl (DACRS) and environmental-vortex (EV) burners. The volume of the DACRS combustors is almost twice the conventional burners, which provide ample residence time for complete combustion. The mixing effectiveness is improved in EV-burners resulting in higher flame stability at low load or startup conditions. To widen the operability, control the emissions, and improve the turndown ratio of gas turbine combustors, the concept of flame stratification, i.e., heterogenization of the overall equivalence ratio, was introduced. This technique can widen the stability range of existing LPM flames for industrial applications. Integrating stratified combustion techniques with oxy-fuel combustion technology is a way forward that may result in complete control of gas turbine emissions with a higher operability turndown ratio. The recent developments and challenges toward the application of hydrogen gas turbines are introduced.

References

1.
IEA
,
2017
, World Energy Outlook.
2.
IPCC
,
2007
, Climate Change—The Physical Science Basis.
3.
Priddle
,
R.
,
1998
, World Energy Outlook 1998, World Energy Outlook 1998.
4.
Ritchie
,
H.
, and
Roser
,
M.
,
2020
, CO2 and GHG Emissions, Our World Data, https://ourworldindata.org/emissions-by-fuel
5.
Armor
,
J. N.
,
2007
, “
Addressing the CO2 Dilemma
,”
Catal. Lett.
,
114
(
3–4
), pp.
115
121
.
6.
Hayhurst
,
A. N.
, and
Lawrence
,
A. D.
,
1992
, “
Emissions of Nitrous Oxide From Combustion Sources
,”
Prog. Energy Combust. Sci.
,
18
(
6
), pp.
529
552
.
7.
Gascoin
,
N.
,
Yang
,
Q.
, and
Chetehouna
,
K.
,
2017
, “
Thermal Effects of CO2 on the NOx Formation Behavior in the CH4 Diffusion Combustion System
,”
Appl. Therm. Eng.
,
110
, pp.
144
149
.
8.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2019
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
.
9.
Kang
,
Y.
,
Wei
,
S.
,
Zhang
,
P.
,
Lu
,
X.
,
Wang
,
Q.
,
Gou
,
X.
,
Huang
,
X.
,
Peng
,
S.
,
Yang
,
D.
, and
Ji
,
X.
,
2017
, “
Detailed Multi-Dimensional Study on NOx Formation and Destruction Mechanisms in Dimethyl Ether/air Diffusion Flame Under the Moderate or Intense Low-Oxygen Dilution (MILD) Condition
,”
Energy
,
119
, pp.
1195
1211
.
10.
Ding
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2021
, “
Fuel-Adaptability Analysis of Intermediate-Temperature-SOFC/Gas Turbine Hybrid System with Biomass Gas
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022104
.
11.
Harris
,
Z.
,
Bittle
,
J.
, and
Agrawal
,
A.
,
2022
, “
Role of Inlet Boundary Conditions on Fuel-Air Mixing at Supercritical Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062302
.
12.
Aygun
,
H.
,
Sheikhi
,
M. R.
, and
Kirmizi
,
M.
,
2022
, “
Parametric Study on Exergy and NO x Metrics of Turbofan Engine Under Different Design Variables
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062303
.
13.
Pardemann
,
R.
, and
Meyer
,
B.
,
2015
, “
Pre-Combustion Carbon Capture
,”
Handbook of Clean Energy Systems
, American Cancer Society, pp.
1
28
.
14.
Babu
,
P.
,
Ong
,
H. W. N.
, and
Linga
,
P.
,
2016
, “
A Systematic Kinetic Study to Evaluate the Effect of Tetrahydrofuran on the Clathrate Process for Pre-Combustion Capture of Carbon Dioxide
,”
Energy
,
94
, pp.
431
442
.
15.
Jansen
,
D.
,
Gazzani
,
M.
,
Manzolini
,
G.
,
Van Dijk
,
E.
, and
Carbo
,
M.
,
2015
, “
Pre-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control.
,
40
, pp.
167
187
.
16.
Lockwood
,
T.
,
2017
, “
A Compararitive Review of Next-Generation Carbon Capture Technologies for Coal-Fired Power Plant
,”
Energy Procedia
,
114
, pp.
2658
2670
.
17.
Hammond
,
G. P.
, and
Spargo
,
J.
,
2014
, “
The Prospects for Coal-Fired Power Plants with Carbon Capture and Storage: A UK Perspective
,”
Energy Convers. Manage.
,
86
, pp.
476
489
.
18.
Yoro
,
K.
, and
Sekoai
,
P.
,
2016
, “
The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants
,”
Environments
,
3
(
4
), p.
24
.
19.
Leung
,
D. Y. C.
,
Caramanna
,
G.
, and
Maroto-Valer
,
M. M.
,
2014
, “
An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
426
443
.
20.
Mondal
,
M. K.
,
Balsora
,
H. K.
, and
Varshney
,
P.
,
2012
, “
Progress and Trends in CO2 Capture/Separation Technologies: A Review
,”
Energy
,
46
(
1
), pp.
431
441
.
21.
Merkel
,
T. C.
,
Lin
,
H.
,
Wei
,
X.
, and
Baker
,
R.
,
2010
, “
Power Plant Post-Combustion Carbon Dioxide Capture: An Opportunity for Membranes
,”
J. Membr. Sci.
,
359
(
1–2
), pp.
126
139
.
22.
Sifat
,
N. S.
, and
Haseli
,
Y.
,
2019
, “
A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation
,”
Energies
,
12
(
21
), p.
4143
.
23.
Gerbelová
,
H.
,
van der Spek
,
M.
, and
Schakel
,
W.
,
2017
, “
Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant: Post-Combustion vs. Oxy-Fuel Combustion Technology
,”
Energy Procedia
,
114
, pp.
6141
6149
.
24.
Thimsen
,
D.
,
Wheeldon
,
J.
, and
Dillon
,
D.
,
2011
,
Economic Comparison of oxy-Coal Carbon Dioxide (CO2) Capture and Storage (CCS) With pre- and Post-Combustion CCS
,
Woodhead Publishing Limited
,
Amsterdam, The Netherlands
.
25.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
121701
.
26.
Bouillon
,
P. A.
,
Hennes
,
S.
, and
Mahieux
,
C.
,
2009
, “
ECO2: Post-Combustion or Oxyfuel—A Comparison Between Coal Power Plants With Integrated CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
4015
4022
.
27.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2020
, “
Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines
,”
Energy Fuels
,
34
(
9
), pp.
10459
10485
.
29.
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
,
Mansir
,
I. B.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2018
, “
Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines
,”
Energy Fuels
,
32
(
2
), pp.
979
1004
.
30.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A new Advanced Low Temperature Combustion Mode With Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
.
31.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/air Flames I: Non-Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2896
2911
.
32.
Winkler
,
D.
,
Geng
,
W.
,
Engelbrecht
,
G.
,
Stuber
,
P.
,
Knapp
,
K.
, and
Griffin
,
T.
,
2017
, “
Staged Combustion Concept for Gas Turbines
,”
J. Global Power Propul. Soc.
,
1
, p.
CVLCX0
.
33.
Lipatnikov
,
A. N.
,
2017
, “
Stratified Turbulent Flames: Recent Advances in Understanding the Influence of Mixture Inhomogeneities on Premixed Combustion and Modeling Challenges
,”
Prog. Energy Combust. Sci.
,
62
, pp.
87
132
.
34.
Ibrahim
,
A. H.
,
Kamal
,
S. Y.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Kayed
,
H.
,
2020
, “
Operability of Fuel/Oxidizer-Flexible Combustor Holding Hydrogen-Enriched Partially Premixed Oxy-Flames Stabilized Over a Perforated Plate Burner
,”
Energy Fuels
,
34
(
7
), pp.
8653
8665
.
35.
Hussain
,
M.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Araoye
,
A. A.
,
Ben-Mansour
,
R.
, and
Habib
,
M. A.
,
2020
, “
A Highly Diluted Oxy-Fuel Micromixer Combustor With Hydrogen Enrichment for Enhancing Turndown in Gas Turbines
,”
Appl. Energy
,
279
, pp.
1
11
.
36.
Imteyaz
,
B.
,
Habib
,
M.
,
Nemitallah
,
M.
,
Abdelhafez
,
A.
, and
Ben-Mansour
,
R.
,
2020
, “
Operability of a Premixed Combustor Holding Hydrogen-Enriched Oxy-Methane Flames : An Experimental and Numerical Study
,”
Int. J. Energy Res.
,
45
, pp.
1
15
.
37.
ELKady
,
A. M.
, and
Evulet
,
S. T.
,
2008
, Fuel-Flexible Tripple-Counter-Rotatig Swirler and Method of Use, US20080163627A1.
38.
ELKady
,
A. M.
, and
Evulet
,
S. T.
,
2008
, Triplpe Annular Counter Rotating Swirler, US20080115501A1.
39.
Kurz
,
R.
,
Brun
,
K.
,
Meher-Homji
,
C.
,
Moore
,
J.
, and
Gonzalez
,
F.
,
2013
, “
Gas Turbine Performance and Maintenance
,”
Forty-Second Turbomachinery Symposium
,
Springer Nature
,
Germany
.
40.
Nemitallah
,
M. A.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2020
,
Approaches for Clean Combustion in Gas Turbines
,
Springer International Publishing
,
Cham
.
41.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, Gas Turbine Combustion: Alternative Fuels and Emissions.
42.
Verhoek
,
F. H.
,
1969
, “
Thermodynamics and Rocket Propulsion
,”
J. Chem. Educ.
,
46
(
3
), p.
140
.
43.
Shaddix
,
C. R.
,
Williams
,
T. C.
, and
Schefer
,
R. W.
,
2007
, “
Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor
,” pp.
889
897
.
44.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2007
, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,” pp.
181
187
.
45.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.
46.
Wang
,
Q.
,
Hu
,
L.
,
Yoon
,
S. H.
,
Lu
,
S.
,
Delichatsios
,
M.
, and
Chung
,
S. H.
,
2015
, “
Blow-Out Limits of Nonpremixed Turbulent jet Flames in a Cross Flow at Atmospheric and Sub-Atmospheric Pressures
,”
Combust. Flame
,
162
(
10
), pp.
3562
3568
.
47.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
48.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.
49.
Taamallah
,
S.
,
Labry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3273
3282
.
50.
Crocco
,
L.
,
1969
, “
Research on Combustion Instability in Liquid Propellant Rockets
,”
Symp. Combust.
,
12
(
1
), pp.
85
99
.
51.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
52.
Boyce
,
M. P.
,
2012
,
Combustors
, 4th ed.,
Elsevier
,
New York
.
53.
Schorr
,
M. M.
, and
Chalfin
,
J.
,
1999
, “Gas Turbine NOx Emissions Approaching Zero-Is It Worth the Price?,” GE Power Gener. GER, pp.
1
10
.
54.
Joshi
,
N. D.
,
Epstein
,
M. J.
,
Durlak
,
S.
,
Marakovits
,
S.
, and
Sabla
,
P. E.
,
1994
, “
Development of a Fuel Air Premixer for Aeroderivative Dry Low Emissions Combustors
,”
Proceedings of the ASME Turbo Exposition
,
3
.
55.
Joshi
,
N. D.
,
Mongia
,
H. C.
,
Leonard
,
G.
,
Stegmaier
,
J. W.
, and
Vickers
,
E. C.
,
1998
, “
Dry Low Emissions Combustor Development
,” Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations.
,
American Society of Mechanical Engineers
,
56.
Zajadatz
,
M.
,
Pennell
,
D.
,
Bernero
,
S.
,
Paikert
,
B.
,
Zoli
,
R.
, and
Döbbeling
,
K.
,
2012
, “
Development and Implementation of the AEV Burner for the Alstom GT13E2
,” pp.
351
360
.
57.
Döbbeling
,
K.
,
Hellat
,
J.
, and
Koch
,
H.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
2
12
.
58.
Sattelmayer
,
T.
,
Felchlin
,
M. P.
,
Haumann
,
J.
,
Hellat
,
J.
, and
Styner
,
D.
,
1992
, “
Second-Generation Low-Emission Combustors for ABB Gas Turbines: Burner Development and Tests at Atmospheric Pressure
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
118
125
.
59.
Leibovich
,
S.
,
1984
, “
Vortex Stability and Breakdown—Survey and Extension
,”
AIAA J.
,
22
(
9
), pp.
1192
1206
.
60.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.
61.
Joos
,
F.
,
Brunner
,
P.
,
Stalder
,
M.
, and
Tschirren
,
S.
,
1998
, “
Field Experience With the Sequential Combustion System of the GT24/GT26 gas turbine family
,”
ABB Rev.
,
5
, pp.
12
20
.
62.
Müller
,
G.
,
Valk
,
M.
,
Hosse
,
G.
, and
Heller
,
H.
,
2000
, “
Large Gas Turbines—the Insurance Aspects (Update)
,”
Int. Assoc. Eng. Insur.
,
13
, pp. 1–21. http://www.imia.com/wp-content/uploads/2013/05/WGP-1300-Large-Gas-Turbines.pdf
63.
Joos
,
F.
,
Brunner
,
P.
,
Schulte-Werning
,
B.
,
Syed
,
K.
, and
Eroglu
,
A.
,
1996
, “
Development of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family
,
Paper
No. 96-GT-315, p. V004T10A022
.
64.
Zajadatz
,
M.
,
Güthe
,
F.
,
Freitag
,
E.
,
Ferreira-Providakis
,
T.
,
Wind
,
T.
,
Magni
,
F.
, and
Goldmeer
,
J.
,
2018
, “
Extended Range of Fuel Capability for GT13E2 AEV Burner with Liquid and Gaseous Fuels
,”
ASME J. Eng. Gas Turbines Power
,
141
(5), p. 051017.
65.
Zajadatz
,
M.
,
Lachner
,
R.
,
Bernero
,
S.
,
Motz
,
C.
, and
Flohr
,
P.
,
2007
, “
Development and Design of Alstom’s Staged Fuel Gas Injection EV Burner for NOx Reduction
,”
Vol. 2 Turbo Expo 2007, ASMEDC
, pp.
559
567
.
66.
Cho
,
C. H.
,
Baek
,
G. M.
,
Sohn
,
C. H.
,
Cho
,
J. H.
, and
Kim
,
H. S.
,
2013
, “
A Numerical Approach to Reduction of NOx Emission From Swirl Premix Burner in a gas Turbine Combustor
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
454
463
.
67.
Guethe
,
F.
,
Lachner
,
R.
,
Schuermans
,
B.
,
Biagioli
,
F.
,
Geng
,
W.
,
Inauen
,
A.
,
Schenker
,
S.
,
Bombach
,
R.
, and
Hubschmid
,
W.
,
2006
, “
Flame Imaging on the ALSTOM EV-Burner: Thermo Acoustic Pulsations and CFD-Validation
,”
44th AIAA Aerospace Science Meeting Exhibition
,
American Institute of Aeronautics and Astronautics
,
68.
Guyot
,
D.
,
Meeuwissen
,
T.
, and
Rebhan
,
D.
,
2012
, “
Staged Premix EV Combustion in Alstom’s GT24 Gas Turbine Engine
,”
Vol. 2 Combust. Fuels Emiss. Parts A B
,
American Society of Mechanical Engineers
, pp.
1537
1545
.
69.
Steinbach
,
C.
,
Ruck
,
T.
,
Lloyd
,
J.
,
Jansohn
,
P.
,
Döbbeling
,
K.
,
Sattelmayer
,
T.
, and
Strand
,
T.
,
1998
, “
ABB’s Advanced EV Burner—A Dual Fuel Dry Low NOx Burner for Stationary Gas Turbines
,”
Proceedings of the ASME Turbo Exposition
,
American Society of Mechanical Engineers
,
70.
Imteyaz
,
B. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2018
, “
Combustion Behavior and Stability Map of Hydrogen-Enriched Oxy-Methane Premixed Flames in a Model Gas Turbine Combustor
,”
Int. J. Hydrogen Energy
,
43
(
34
), pp.
16652
16666
.
71.
Ghoniem
,
A. F.
,
2011
, “
Needs, Resources and Climate Change: Clean and Efficient Conversion Technologies
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
15
51
.
72.
Habib
,
M. A.
,
Nemitallah
,
M.
, and
Ben-Mansour
,
R.
,
2013
, “
Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors
,”
Energy Fuels
,
27
(
1
), pp.
2
19
.
73.
Galeana
,
D.
, and
Beyene
,
A.
,
2021
, “
Gas Turbine Blade Heat Transfer and Internal Swirl Cooling Flow Experimental Study Using Liquid Crystals and Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102106
.
74.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p. 080805.
75.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
76.
Shaddix
,
C.
, and
Molina
,
A.
,
2011
, “
6—Ignition, Flame Stability, and Char Combustion in Oxy-Fuel Combustion, in Oxy-Fuel Combust
,”
Power Gener. Carbon Dioxide Capture
,
Elsevier
,
Amsterdam, The Netherlands
. pp.
101
124
. https://www.sciencedirect.com/science/article/pii/B9781845696719500065?via%3Dihub
77.
Li
,
Y. H.
,
Chen
,
G. B.
, and
Chao
,
Y. C.
,
2015
, “
Effects of Flue Gas Addition on the Premixed Oxy-Methane Flames in Atmospheric Condition
,”
Energy Procedia
,
75
, pp.
3054
3059
.
78.
Oh
,
J.
, and
Noh
,
D.
,
2012
, “
Laminar Burning Velocity of Oxy-Methane Flames in Atmospheric Condition
,”
Energy
,
45
(
1
), pp.
669
675
.
79.
Shah
,
M.
,
Degenstein
,
N.
,
Zanfir
,
M.
,
Kumar
,
R.
,
Bugayong
,
J.
, and
Burgers
,
K.
,
2011
, “
Near Zero Emissions Oxy-Combustion CO2 Purification Technology
,”
Energy Procedia
,
4
, pp.
988
995
.
80.
Díaz-Herrera
,
P. R.
,
Alcaraz-Calderón
,
A. M.
,
González-Díaz
,
M. O.
, and
González-Díaz
,
A.
,
2020
, “
Capture Level Design for a Natural gas Combined Cycle with Post-Combustion CO2 Capture Using Novel Configurations
,”
Energy
,
193
, pp. 1598–1608.
81.
Shah
,
I. A.
,
Gou
,
X.
,
Zhang
,
Q.
,
Wu
,
J.
,
Wang
,
E.
, and
Liu
,
Y.
,
2018
, “
Experimental Study on NO x Emission Characteristics of Oxy-Biomass Combustion
,”
J. Cleaner Prod.
,
199
, pp.
400
410
.
82.
Andersson
,
K.
,
Normann
,
F.
,
Johnsson
,
F.
, and
Leckner
,
B.
,
2008
, “
NO Emission During Oxy-Fuel Combustion of Lignite
,”
Ind. Eng. Chem. Res.
,
47
(
6
), pp.
1835
1845
.
83.
Schluckner
,
C.
,
Gaber
,
C.
,
Landfahrer
,
M.
,
Demuth
,
M.
, and
Hochenauer
,
C.
,
2020
, “
Fast and Accurate CFD-Model for NOx Emission Prediction During Oxy-Fuel Combustion of Natural gas Using Detailed Chemical Kinetics
,”
Fuel
,
264
, p.
116841
.
84.
Shakeel
,
M. R.
,
Sanusi
,
Y. S.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Numerical Modeling of Oxy-Methane Combustion in a Model gas Turbine Combustor
,”
Appl. Energy
,
228
, pp.
68
81
.
85.
Imteyaz
,
B.
,
Tahir
,
F.
, and
Habib
,
M. A.
,
2021
, “
Thermodynamic Assessment of Membrane-Assisted Premixed and Non-Premixed Oxy-Fuel Combustion Power Cycles
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052303
.
86.
Nemitallah
,
M. A.
,
Abdelhafez
,
A. A.
,
Ali
,
A.
,
Mansir
,
I.
, and
Habib
,
M. A.
,
2019
, “
Frontiers in Combustion Techniques and Burner Designs for Emissions Control and CO2 Capture: A Review
,”
Int. J. Energy Res.
,
43
, pp.
7790
7822
.
87.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2005
, “
The Interaction of Flame and Flow Field in a Lean Premixed Swirl-Stabilized Combustor Operated on H2/CH4/air
,”
Proc. Combust. Inst.
,
30
(
II
), pp.
2875
2883
.
88.
Williams
,
T. C.
,
Shaddix*
,
C. R.
, and
Schefer
,
R. W.
,
2008
, “
Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor
,”
Combust. Sci. Technol.
,
180
(
1
), pp.
64
88
.
89.
Joo
,
P. H.
,
Charest
,
M. R. J.
,
Groth
,
C. P. T.
, and
Gülder
,
ÖL
,
2013
, “
Comparison of Structures of Laminar Methane-Oxygen and Methane-Air Diffusion Flames From Atmospheric to 60atm
,”
Combust. Flame
,
160
(
10
), pp.
1990
1998
.
90.
Xie
,
Y.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong
,
J.
,
Jin
,
W.
, and
Huang
,
Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted with CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.
91.
Rashwan
,
S.
,
Ibrahim
,
A.
, and
Abou-Arab
,
T.
,
2015
, “
Experimental Investigation of Oxy-Fuel Combustion of CNG Flames Stabilized Over a Perforated Plate Burner
,”
18th IFRF Members Conference on Flexible and Clean Fuel Conversion in Industry
,
Freising, Germany
,
June 1–3
.
92.
Ramadan
,
I. A.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Effects of Oxidizer Flexibility and Bluff-Body Blockage Ratio on Flammability Limits of Diffusion Flames
,”
Appl. Energy
,
178
, pp.
19
28
.
93.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.
94.
Abubakar
,
Z.
,
Sanusi
,
S. Y.
, and
Mokheimer
,
E. M. A.
,
2017
, “
Stability of Propane-Air and Oxyfuel Diffusion Flames in a Swirl-Stabilized Combustor; an Experimental Study
,”
Energy Procedia
,
142
, pp.
1552
1557
.
95.
Tahir
,
F.
,
Ali
,
H.
,
Baloch
,
A. A. B.
, and
Jamil
,
Y.
,
2019
, “
Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor
,”
Energies
,
12
(
9
), p. 1706.
96.
Habib
,
M. A.
,
Badr
,
H. M.
,
Ahmed
,
S. F.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Imashuku
,
S.
,
la O’
,
G. J.
, et al
,
2011
, “
A Review of Recent Developments in Carbon Capture Utilizing Oxy-Fuel Combustion in Conventional and ion Transport Membrane Systems
,”
Int. J. Energy Res.
,
35
(
9
), pp.
741
764
.
97.
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2013
, “
Experimental and Numerical Investigations of an Atmospheric Diffusion Oxy-Combustion Flame in a gas Turbine Model Combustor
,”
Appl. Energy
,
111
, pp.
401
415
.
98.
Habib
,
M. A.
,
Salaudeen
,
S. A.
,
Nemitallah
,
M. A.
,
Ben-Mansour
,
R.
, and
Mokheimer
,
E. M. A.
,
2016
, “
Numerical Investigation of Syngas Oxy-Combustion Inside a LSCF-6428 Oxygen Transport Membrane Reactor
,”
Energy
,
96
, pp.
654
665
.
99.
Nemitallah
,
M. A.
,
2016
, “
A Study of Methane Oxy-Combustion Characteristics Inside a Modified Design Button-Cell Membrane Reactor Utilizing a Modified Oxygen Permeation Model for Reacting Flows
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
61
73
.
100.
Lee
,
K.
,
Kim
,
H.
,
Park
,
P.
,
Yang
,
S.
, and
Ko
,
Y.
,
2013
, “
CO2 Radiation Heat Loss Effects on NOx Emissions and Combustion Instabilities in Lean Premixed Flames
,”
Fuel
,
106
, pp.
682
689
.
101.
Lafay
,
Y.
,
Taupin
,
B.
,
Martins
,
G.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A.
,
2007
, “
Experimental Study of Biogas Combustion Using a gas Turbine Configuration
,”
Exp. Fluids
,
43
(
2-3
), pp.
395
410
.
102.
Gupta
,
K. K.
,
Rehman
,
A.
, and
Sarviya
,
R. M.
,
2010
, “
Bio-fuels for the gas Turbine: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2946
2955
.
103.
Zhang
,
J.
,
Mi
,
J.
,
Li
,
P.
,
Wang
,
F.
, and
Dally
,
B. B.
,
2015
, “
Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO2 and N2
,”
Energy Fuels
,
29
(
7
), pp.
4576
4585
.
104.
Amato
,
A.
,
Hudak
,
B.
,
D’Carlo
,
P.
,
Noble
,
D.
,
Scarborough
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Methane Oxycombustion for low CO2 Cycles: Blowoff Measurements and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061503
.
105.
Oh
,
J.
,
Noh
,
D.
, and
Lee
,
E.
,
2013
, “
The Effect of CO Addition on the Flame Behavior of a Non-Premixed Oxy-Methane Jet in a Lab-Scale Furnace
,”
Appl. Energy
,
112
, pp.
350
357
.
106.
Jerzak
,
W.
, and
Kuźnia
,
M.
,
2016
, “
Experimental Study of Impact of Swirl Number as Well as Oxygen and Carbon Dioxide Content in Natural gas Combustion air on Flame Flashback and Blow-Off
,”
J. Nat. Gas Sci. Eng.
,
29
, pp.
46
54
.
107.
Rashwan
,
S. S.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Experimental Investigation of Partially Premixed Methane–air and Methane–Oxygen Flames Stabilized Over a Perforated-Plate Burner
,”
Appl. Energy
,
169
, pp.
126
137
.
108.
Ditaranto
,
M.
, and
Hals
,
J.
,
2006
, “
Combustion Instabilities in Sudden Expansion oxy-Fuel Flames
,”
Combust. Flame
,
146
(
3
), pp.
493
512
.
109.
Kutne
,
P.
,
Kapadia
,
B. K.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of the Combustion Behaviour of Oxyfuel Flames in a gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3383
3390
.
110.
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
, and
Habib
,
M. A.
,
2018
, “
Adiabatic Flame Temperature for Controlling the Macrostructures and Stabilization Modes of Premixed Methane Flames in a Model Gas-Turbine Combustor
,”
Energy Fuels
,
32
(
7
), pp.
7868
7877
.
111.
Habib
,
M. A.
,
Nemitallah
,
M. A.
,
Ahmed
,
P.
,
Sharqawy
,
M. H.
,
Badr
,
H. M.
,
Muhammad
,
I.
, and
Yaqub
,
M.
,
2015
, “
Experimental Analysis of Oxygen-Methane Combustion Inside a gas Turbine Reactor Under Various Operating Conditions
,”
Energy
,
86
, pp.
105
114
.
112.
Yin
,
C.
, and
Yan
,
J.
,
2016
, “
Oxy-fuel Combustion of Pulverized Fuels: Combustion Fundamentals and Modeling
,”
Appl. Energy
,
162
, pp.
742
762
.
113.
Song
,
Y.
,
Zou
,
C.
,
He
,
Y.
, and
Zheng
,
C.
,
2015
, “
The Chemical Mechanism of the Effect of CO2 on the Temperature in Methane Oxy-Fuel Combustion
,”
Int. J. Heat Mass Transfer
,
86
, pp.
622
628
.
114.
Liu
,
C. Y.
,
Chen
,
G.
,
Sipöcz
,
N.
,
Assadi
,
M.
, and
Bai
,
X. S.
,
2012
, “
Characteristics of oxy-Fuel Combustion in gas Turbines
,”
Appl. Energy
,
89
(
1
), pp.
387
394
.
115.
Shia
,
S. I. B.
,
Zhua
,
Z.
,
Wanga
,
N.
, and
Lub
,
P.
,
2015
, “
An Experimental Study on Oxy-Fuel Combustion of Methane Under Various Oxygen Mole Fractions An Experimental Study on Oxy-Fuel Combustion of Methane Under Various Oxygen Mole Fractions
,”
8th International Symposium on Coal Combustion
,
Beijing, China
116.
Heil
,
P.
,
Toporov
,
D.
,
Stadler
,
H.
,
Tschunko
,
S.
,
Förster
,
M.
, and
Kneer
,
R.
,
2009
, “
Development of an Oxycoal Swirl Burner Operating at low O2concentrations
,”
Fuel
,
88
(
7
), pp.
1269
1274
.
117.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2 Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
, pp.
626
634
.
118.
Ali
,
A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Hussain
,
M.
,
Kamal
,
M. M.
, and
Habib
,
M. A.
,
2021
, “
Comparative Analysis of the Stability and Structure of Premixed C3H8/O2/CO2 and C3H8/O2/N2 Flames for Clean Flexible Energy Production
,”
Energy
,
214
, pp.
1
10
.
119.
Stanger
,
R.
,
Wall
,
T.
,
Spörl
,
R.
,
Paneru
,
M.
,
Grathwohl
,
S.
,
Weidmann
,
M.
,
Scheffknecht
,
G.
, et al
,
2015
, “
Oxyfuel Combustion for CO2 Capture in Power Plants
,”
Int. J. Greenhouse Gas Control
,
40
, pp.
55
125
.
120.
Wall
,
T. F.
,
2007
, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
,
31
(
I
), pp.
31
47
.
121.
Aneke
,
M.
, and
Wang
,
M.
,
2015
, “
Process Analysis of Pressurized Oxy-Coal Power Cycle for Carbon Capture Application Integrated with Liquid air Power Generation and Binary Cycle Engines
,”
Appl. Energy
,
154
, pp.
556
566
.
122.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A.
, and
Habib
,
M. A.
,
2016
, “
Characteristics of H2-Enriched CH4-O2 Diffusion Flames in a Swirl-Stabilized gas Turbine Combustor: Experimental and Numerical Study
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20418
20432
.
123.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
124.
Granados
,
D. A.
,
Chejne
,
F.
,
Mejía
,
J. M.
,
Gómez
,
C. A.
,
Berrío
,
A.
, and
Jurado
,
W. J.
,
2014
, “
Effect of Flue gas Recirculation During Oxy-Fuel Combustion in a Rotary Cement Kiln
,”
Energy
,
64
, pp.
615
625
.
125.
Wang
,
L.
,
Endrud
,
N. E.
,
Turns
,
S. R.
,
D'Agostini
,
M. D.
, and
Slavejkov
,
A. G.
,
2002
, “
A Study of the Influence of Oxygen Index on Soot, Radiation, and Emission Characteristics of Turbulent jet Flames
,”
Combust. Sci. Technol.
,
174
(
8
), pp.
45
72
.
126.
Wall
,
T.
,
Liu
,
Y.
,
Spero
,
C.
,
Elliott
,
L.
,
Khare
,
S.
,
Rathnam
,
R.
,
Zeenathal
,
F.
, et al
,
2009
, “
An Overview on Oxyfuel Coal Combustion-State of the art Research and Technology Development
,”
Chem. Eng. Res. Des.
,
87
(
8
), pp.
1003
1016
.
127.
Muruganandam
,
T.
,
Nair
,
S.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2002
, “
Optical and Acoustic Sensing of Lean Blowout Precursors
,”
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
American Institute of Aeronautics and Astronautics
,
128.
Nemitallah
,
M.
,
Alkhaldi
,
S.
,
Abdelhafez
,
A.
, and
Habib
,
M.
,
2018
, “
Effect Analysis on the Macrostructure and Static Stability Limits of Oxy-Methane Flames in a Premixed Swirl Combustor
,”
Energy
,
159
, pp.
86
96
.
129.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.
130.
Mansour
,
A.
,
2005
, “
Gas Turbine Fuel Injection Technology
,” pp.
141
149
.
131.
Alkidas
,
A. C.
,
2007
, “
Combustion Advancements in Gasoline Engines
,”
Energy Convers. Manage.
,
48
(
11
), pp.
2751
2761
.
132.
Drake
,
M. C.
, and
Haworth
,
D. C.
,
2007
, “
Advanced Gasoline Engine Development Using Optical Diagnostics and Numerical Modeling
,”
Proc. Combust. Inst.
,
31
(
I
), pp.
99
124
.
133.
Lokini
,
P.
,
Roshan
,
D. K.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(6), p.
062009
.
134.
Straub
,
C.
,
Kronenburg
,
A.
,
Stein
,
O. T.
,
Barlow
,
R. S.
, and
Geyer
,
D.
,
2019
, “
Modeling Stratified Flames with and Without Shear Using Multiple Mapping Conditioning
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2317
2324
.
135.
Schneider
,
S.
,
Geyer
,
D.
,
Magnotti
,
G.
,
Dunn
,
M. J.
,
Barlow
,
R. S.
, and
Dreizler
,
A.
,
2019
, “
Structure of a Stratified CH 4 Flame with H 2 Addition
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2307
2315
.
136.
Galeazzo
,
F. C. C.
,
Savard
,
B.
,
Wang
,
H.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
, and
Krieger Filho
,
G. C.
,
2019
, “
Performance Assessment of Flamelet Models in Flame-Resolved les of a High Karlovitz Methane/air Stratified Premixed jet Flame
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2545
2553
.
137.
Duwig
,
C.
, and
Fureby
,
C.
,
2007
, “
Large Eddy Simulation of Unsteady Lean Stratified Premixed Combustion
,”
Combust. Flame
,
151
(
1–2
), pp.
85
103
.
138.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
,
2007
, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner with and Without Fuel Modulation
,”
Combust. Flame
,
150
(
1–2
), pp.
40
53
.
139.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X. R.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.
140.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.
141.
Nguyen
,
P. D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.
142.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2009
, “
A General Flamelet Transformation Useful for Distinguishing Between Premixed and Non-Premixed Modes of Combustion
,”
Combust. Flame
,
156
(
3
), pp.
678
696
.
143.
Kang
,
T.
, and
Kyritsis
,
D. C.
,
2005
, “
Methane Flame Propagation in Compositionally Stratified Gases
,”
Combust. Sci. Technol.
,
177
(
11
), pp.
2191
2210
.
144.
Galizzi
,
C.
, and
Escudié
,
D.
,
2006
, “
Experimental Analysis of an Oblique Laminar Flame Front Propagating in a Stratified Flow
,”
Combust. Flame
,
145
(
3
), pp.
621
634
.
145.
Renou
,
B.
,
Samson
,
E.
, and
Boukhalfa
,
A.
,
2004
, “
An Experimental Study of Freely Propagating Turbulent Propane/air Flames in Stratified Inhomogeneous Mixtures
,”
Combust. Sci. Technol.
,
176
(
11
), pp.
1867
1890
.
146.
Pasquier
,
N.
,
Lecordier
,
B.
,
Trinité
,
M.
, and
Cessou
,
A.
,
2007
, “
An Experimental Investigation of Flame Propagation Through a Turbulent Stratified Mixture
,”
Proc. Combust. Inst.
,
31
(
I
), pp.
1567
1574
.
147.
Robin
,
V.
,
Mura
,
A.
,
Champion
,
M.
,
Degardin
,
O.
,
Renou
,
B.
, and
Boukhalfa
,
M.
,
2008
, “
Experimental and Numerical Analysis of Stratified Turbulent V-Shaped Flames
,”
Combust. Flame
,
153
(
1–2
), pp.
288
315
.
148.
Anselmo-Filho
,
P.
,
Hochgreb
,
S.
,
Barlow
,
R. S.
, and
Cant
,
R. S.
,
2009
, “
Experimental Measurements of Geometric Properties of Turbulent Stratified Flames
,”
Proc. Combust. Inst.
,
32
(
II
), pp.
1763
1770
.
149.
Böhm
,
B.
,
Frank
,
J. H.
, and
Dreizler
,
A.
,
2011
, “
Temperature and Mixing Field Measurements in Stratified Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1583
1590
.
150.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2011
, “
A Comparative Analysis of Flame Surface Density Metrics Inpremixed and Stratified Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1419
1427
.
151.
Vena
,
P. C.
,
Deschamps
,
B.
,
Smallwood
,
G. J.
, and
Johnson
,
M. R.
,
2011
, “
Equivalence Ratio Gradient Effects on Flame Front Topology in a Stratified iso-Octane/air Turbulent V-Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1551
1558
.
152.
Seffrin
,
F.
,
Fuest
,
F.
,
Geyer
,
D.
, and
Dreizler
,
A.
,
2010
, “
Flow Field Studies of a new Series of Turbulent Premixed Stratified Flames
,”
Combust. Flame
,
157
(
2
), pp.
384
396
.
153.
Galizzi
,
C.
, and
Escudié
,
D.
,
2010
, “
Experimental Analysis of an Oblique Turbulent Flame Front Propagating in a Stratified Flow
,”
Combust. Flame
,
157
(
12
), pp.
2277
2285
.
154.
Pires Da Cruz
,
A.
,
Dean
,
A. M.
, and
Grenda
,
J. M.
,
2000
, “
A Numerical Study of the Laminar Flame Speed of Stratified Methane/air Flames
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1925
1932
.
155.
Marzouk
,
Y. M.
,
Ghoniem
,
A. F.
, and
Najm
,
H. N.
,
2000
, “
Dynamic Response of Strained Premixed Flames to Equivalence Ratio Gradients
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1859
1866
.
156.
Richardson
,
E. S.
,
Granet
,
V. E.
,
Eyssartier
,
A.
, and
Chen
,
J. H.
,
2010
, “
Effects of Equivalence Ratio Variation on Lean, Stratified Methane-air Laminar Counterflow Flames
,”
Combust. Theory Modell.
,
14
(
6
), pp.
775
792
.
157.
Hélie
,
J.
, and
Trouvé
,
A.
,
1998
, “
Turbulent Flame Propagation in Partially Premixed Combustion
,”
Symp. Combust.
,
27
(
1
), pp.
891
898
.
158.
Haworth
,
D. C.
,
Blint
,
R. J.
,
Cuenot
,
B.
, and
Poinsot
,
T. J.
,
2000
, “
Numerical Simulation of Turbulent Propane-air Combustion with Nonhomogeneous Reactants
,”
Combust. Flame
,
121
(
3
), pp.
395
417
.
159.
Jiménez
,
C.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Haworth
,
D.
,
2002
, “
Numerical Simulation and Modeling for Lean Stratified Propane-air Flames
,”
Combust. Flame
,
128
(
1–2
), pp.
1
21
.
160.
Bray
,
K.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2005
, “
Role of the Progress Variable in Models for Partially Premixed Turbulent Combustion
,”
Combust. Flame
,
141
(
4
), pp.
431
437
.
161.
Robin
,
V.
,
Mura
,
A.
,
Champion
,
M.
, and
Plion
,
P.
,
2006
, “
A Multi-Dirac Presumed pdf Model for Turbulent Reactive Flows with Variable Equivalence Ratio
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1843
1870
.
162.
Kim
,
N. I.
,
Seo
,
J. I.
,
Oh
,
K. C.
, and
Shin
,
H. D.
,
2005
, “
Lift-Off Characteristics of Triple Flame with Concentration Gradient
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
367
374
.
163.
Balusamy
,
S.
,
Cessou
,
A.
, and
Lecordier
,
B.
,
2014
, “
Laminar Propagation of Lean Premixed Flames Ignited in Stratified Mixture
,”
Combust. Flame
,
161
(
2
), pp.
427
437
.
164.
Kang
,
T.
, and
Kyritsis
,
D. C.
,
2009
, “
Phenomenology of Methane Flame Propagation Into Compositionally Stratified, Gradually Richer Mixtures
,”
Proc. Combust. Inst.
,
32
(
I
), pp.
979
985
.
165.
Kang
,
T.
, and
Kyritsis
,
D. C.
,
2007
, “
Departure From Quasi-Homogeneity During Laminar Flame Propagation in Lean, Compositionally Stratified Methane-air Mixtures
,”
Proc. Combust. Inst.
,
31
(
I
), pp.
1075
1083
.
166.
Kim
,
N. I.
,
Seo
,
J. I.
,
Guahk
,
Y. T.
, and
Shin
,
H. D.
,
2006
, “
The Propagation of Tribrachial Flames in a Confined Channel
,”
Combust. Flame
,
146
(
1–2
), pp.
168
179
.
167.
Grib
,
S. W.
, and
Renfro
,
M. W.
,
2018
, “
Propagation Speeds for Interacting Triple Flames
,”
Combust. Flame
,
187
, pp.
230
238
.
168.
Ruetsch
,
G. R.
,
Vervisch
,
L.
, and
Liñán
,
A.
,
1995
, “
Effects of Heat Release on Triple Flames
,”
Phys. Fluids
,
7
(
6
), pp.
1447
1454
.
169.
Han
,
X.
,
Aggarwal
,
S. K.
, and
Brezinsky
,
K.
,
2013
, “
Effect of Unsaturated Bond on NOx and PAH Formation in n-Heptane and 1-Heptene Triple Flames
,”
Energy Fuels
,
27
(
1
), pp.
537
548
.
170.
Chung
,
S. H.
,
2007
, “
Stabilization, Propagation and Instability of Tribrachial Triple Flames
,”
Proc. Combust. Inst.
,
31
(
I
), pp.
877
892
.
171.
Owston
,
R.
, and
Abraham
,
J.
,
2010
, “
Structure of Hydrogen Triple Flames and Premixed Flames Compared
,”
Combust. Flame
,
157
(
8
), pp.
1552
1565
.
172.
Plessing
,
T.
,
Terhoeven
,
P.
,
Peters
,
N.
, and
Mansour
,
M. S.
,
1998
, “
An Experimental and Numerical Study of a Laminar Triple Flame
,”
Combust. Flame
,
115
(
3
), pp.
335
353
.
173.
Zhang
,
J.
, and
Abraham
,
J.
,
2016
, “
A Numerical Study of Laminar Flames Propagating in Stratified Mixtures
,”
Combust. Flame
,
163
, pp.
461
471
.
174.
Bartolucci
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
, and
Rocco
,
V.
,
2018
, “
Natural Gas Partially Stratified Lean Combustion: Analysis of the Enhancing Mechanisms Into a Constant Volume Combustion Chamber
,”
Fuel
,
211
, pp.
737
753
.
175.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of the Fuel Injection Pressure on Particulate Emissions From a Gasohol (E15 and M15)-Fueled Gasoline Direct Injection Engine
,”
Energy Fuels
,
31
(
4
), pp.
4155
4164
.
176.
Lee
,
J.
,
Chu
,
S.
,
Kang
,
J.
,
Min
,
K.
,
Jung
,
H.
,
Kim
,
H.
, and
Chi
,
Y.
,
2019
, “
The Classification of Gasoline/Diesel Dual-Fuel Combustion Based on the Heat Release Rate Shapes and its Application in a Light-Duty Single-Cylinder Engine
,”
Int. J. Engine Res.
,
20
(
1
), pp.
69
79
.
177.
Kahila
,
H.
,
Wehrfritz
,
A.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2019
, “
Large-Eddy Simulation of Dual-Fuel Ignition: Diesel Spray Injection Into a Lean Methane-air Mixture
,”
Combust. Flame
,
199
, pp.
131
151
.
178.
García
,
A.
,
Monsalve-Serrano
,
J.
,
Sari
,
R.
,
Dimitrakopoulos
,
N.
,
Tunér
,
M.
, and
Tunestål
,
P.
,
2019
, “
Performance and Emissions of a Series Hybrid Vehicle Powered by a Gasoline Partially Premixed Combustion Engine
,”
Appl. Therm. Eng.
,
150
, pp.
564
575
.
179.
Huang
,
H.
,
Lv
,
D.
,
Zhu
,
J.
,
Zhu
,
Z.
,
Chen
,
Y.
,
Pan
,
Y.
, and
Pan
,
M.
,
2019
, “
Development of a new Reduced Diesel/Natural gas Mechanism for Dual-Fuel Engine Combustion and Emission Prediction
,”
Fuel
,
236
, pp.
30
42
.
180.
Park
,
S.
,
Woo
,
S.
,
Oh
,
H.
, and
Lee
,
K.
,
2017
, “
Effects of Various Lubricants and Fuels on Pre-Ignition in a Turbocharged Direct-Injection Spark-Ignition Engine
,”
Energy Fuels
,
31
(
11
), pp.
12701
12711
.
181.
Kim
,
T. Y.
,
Park
,
C.
,
Oh
,
S.
, and
Cho
,
G.
,
2016
, “
The Effects of Stratified Lean Combustion and Exhaust gas Recirculation on Combustion and Emission Characteristics of an LPG Direct Injection Engine
,”
Energy
,
115
, pp.
386
396
.
182.
Samuelsen
,
S.
,
2016
, “
Conventional Type Combustion
,”
Gas Turbine Handbook
,
Elsevier
,
Amsterdam, The Netherlands
. pp.
209
217
. https://netl.doe.gov/sites/default/files/gas-turbine-handbook/3-2-1-1.pdf
183.
Borchert
,
U.
, and
Szymczyk
,
J. A.
,
2011
, “
Fluidic Analyses of a Model Gas Turbine Combustion Chamber with and Without Combustion Under Actual Operating Conditions
,”
XX. International Conference Research and Practice Didact. Mod. Mech. Eng.
,
Stralsund
, NETL, Morgantown, WV.
184.
Samuelsen
,
S.
,
2011
, “
Rich Burn, Quick- Mix, Lean Burn (RQL) Combustor
,”
Gas Turbine Handbook
,
Online Conference Proceeding, Stralsund
, pp.
227
233
.
185.
Kiameh
,
P.
,
2003
,
Power Generation Handbook : Selection, Applications, Operation, and Maintenance
,
McGraw-Hill Handbooks
,
New York
.
186.
Cihlar
,
D. W.
,
Willis
,
C. P.
,
Singley
,
M. A.
, and
Reed
,
J. G.
,
2019
,
Axial Fuel Staging System for a Gas Turbine Combustor (European Patent-EP 3214374 A1), EP 3214374
.
187.
Wilson
,
M. B.
,
Harper
,
J.
,
Chong
,
Y. H.
, and
Jones
,
C. E.
,
2019
,
Axial Fuel Staging System for Gas Turbine Combustors, US20190178498
.
188.
Shao
,
W.
,
Wang
,
Z.
,
Liu
,
X.
,
Zhang
,
Z.
,
Xiao
,
Y.
, and
Zhao
,
Y.
,
2019
, “
Numerical and Experimental Parametric Study of Emission Characteristics in an Axial Fuel Staging System
,”
Energy Fuels
,
33
(
12
), pp.
12723
12735
.
189.
Boyce
,
M.
,
2012
, “Gas Turbine Performance Test,”
Gas Turbine Eng. Handbook
, 4th ed.,
Elsevier
,
New York
, pp.
769
802
.
190.
Gülen
,
S.
,
2019
, “The Hall of Fame,”
Gas Turbines Electr. Power Gener.
Cambridge University Press
,
Amsterdam, The Netherlands
. pp.
626
650
.
191.
Axial Staging in Combustor Upgrade Helps to Deliver Emission Compliance at 25% Load
,”
2018
,
Turbomach. Int.
, vol.
1
, pp.
626
650
, https://www.turbomachinerymag.com/ge-power-introduces-new-dln2-6flex-upgrade-solution-for-7f-gas-turbines/
192.
Hayashi
,
S.
,
Yamada
,
H.
, and
Makida
,
M.
,
2005
, “
Extending Low-NOx Operating Range of a Lean Premixed-Prevaporized Gas Turbine Combustor by Reaction of Secondary Mixtures Injected Into Primary Stage Burned Gas
,”
Proc. Combust. Inst.
,
30
(
II
), pp.
2903
2911
.
193.
Hayashi
,
S.
, and
Yamada
,
H.
,
2000
, “
NOX Emissions in Combustion of Lean Premixed Mixtures Injected Into hot Burned gas
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2443
2449
.
194.
Emara
,
A.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2009
, “
Pilot Flame Impact on Flow Fields and Combustion Performances in a Swirl Inducing Burner
,”
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, pp.
1
13
.
195.
Zubrilin
,
I. A.
,
Gurakov
,
N. I.
, and
Matveev
,
S. G.
,
2017
, “
Lean Blowout Limit Prediction in a Combustor With the Pilot Flame
,”
Energy Procedia
,
141
, pp.
273
281
.
196.
Fu
,
X.
,
Yang
,
F.
, and
Guo
,
Z.
,
2015
, “
Combustion Instability of Pilot Flame in a Pilot Bluff Body Stabilized Combustor
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1606
1615
.
197.
Davis
,
L. B.
, and
Black
,
S. H.
,
2000
, “Dry low NOX Combustion Systems for GE Heavy-Duty Gas Turbines,” GE Power System.
198.
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Badr
,
H. M.
,
2019
,
Oxyfuel Combustion for Clean Energy Applications
,
Springer International Publishing
,
Cham
.
199.
Durbin
,
M. D.
,
Mueller
,
M. A.
,
Blakemen
,
L. K.
, and
Lind
,
D. A.
,
2017
, System and Method for Flame Stabilization, US 9719685 B2.
200.
Han
,
X.
,
Laera
,
D.
,
Yang
,
D.
,
Zhang
,
C.
,
Wang
,
J.
,
Hui
,
X.
,
Lin
,
Y.
,
Morgans
,
A. S.
, and
Sung
,
C.-J.
,
2020
, “
Flame Interactions in a Stratified Swirl Burner: Flame Stabilization, Combustion Instabilities and Beating Oscillations
,”
Combust. Flame
,
212
, pp.
500
509
.
201.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Sung
,
C. J.
,
Hui
,
X.
, and
Lin
,
Y. Z.
,
2019
, “
Flame Macrostructures and Thermoacoustic Instabilities in Stratified Swirling Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5377
5384
.
202.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/air Flames II: Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2912
2929
.
203.
Barlow
,
R. S.
,
Wang
,
G. H.
,
Anselmo-Filho
,
P.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2009
, “
Application of Raman/Rayleigh/LIF Diagnostics in Turbulent Stratified Flames
,”
Proc. Combust. Inst.
,
32
(
I
), pp.
945
953
.
204.
Li
,
L.
,
Lin
,
Y.
,
Fu
,
Z.
, and
Zhang
,
C.
,
2016
, “
Emission Characteristics of a Model Combustor for Aero gas Turbine Application
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
235
248
.
205.
Chong
,
C. T.
,
Lam
,
S. S.
, and
Hochgreb
,
S.
,
2016
, “
Effect of Mixture Flow Stratification on Premixed Flame Structure and Emissions Under Counter-Rotating Swirl Burner Configuration
,”
Appl. Therm. Eng.
,
105
, pp.
905
912
.
206.
Rodrigues
,
N. S.
,
Busari
,
O.
,
Senior
,
W. C. B.
,
McDonald
,
C. T.
,
Chen
,
Y. T.
,
North
,
A. J.
,
Laster
,
W. R.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2020
, “
NOX Reduction in an Axially Staged gas Turbine Model Combustor Through Increase in the Combustor Exit Mach Number
,”
Combust. Flame
,
212
, pp.
282
294
.
207.
Wang
,
B.
,
Zhang
,
C.
,
Hui
,
X.
,
Lin
,
Y.
, and
Li
,
J.
,
2016
, “
Influence of Sleeve Angle on the LBO Performance of TeLESS-II Combustor
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
American Institute of Aeronautics and Astronautics
,
Reston, Virginia
, pp.
1
8
.
208.
Arndt
,
C. M.
,
Severin
,
M.
,
Dem
,
C.
,
Stöhr
,
M.
,
Steinberg
,
A. M.
, and
Meier
,
W.
,
2015
, “
Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements
,”
Exp. Fluids
,
56
(
4
), pp.
1
23
.
209.
Arndt
,
C. M.
,
Dem
,
C.
, and
Meier
,
W.
,
2021
, “
Influence of Fuel Staging on Thermo-Acoustic Oscillations in a Premixed Stratified Dual-Swirl Gas Turbine Model Combustor, Flow
,”
Turbul. Combust.
,
106
(
2
), pp.
613
629
.
210.
Rizvi
,
M. S.
,
2021
, “
Detailed Numerical Comparison of Laminar Burning Speed of Stratified Hydrogen-Air and Methane-Air Mixture With Corresponding Homogeneous Mixture Using Open-Source Code
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102303
.
211.
Samarasinghe
,
J.
,
Culler
,
W.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121504
.
212.
Otero
,
M.
,
Genova
,
T.
,
Stiehl
,
B.
,
Morales
,
A. J.
,
Martin
,
S.
, and
Ahmed
,
K. A.
,
2022
, “
The Influence of Pressure on Flame-Flow Characteristics of a Reacting Jet in Crossflow
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052301
.
213.
Stiehl
,
B.
,
Genova
,
T.
,
Otero
,
M.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Fuel Stratification Influence on NOxemission in a Premixed Axial Reacting Jet-In-Crossflow at High Pressure
,”
ASME J. Energy Resour. Technol.
,
143
(12), p.
122303
.
214.
Stiehl
,
B.
,
Otero
,
M.
,
Genova
,
T.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
The Effect of Pressure on NOx Entitlement and Reaction Timescales in a Premixed Axial Jet-In-Crossflow
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112306
.
215.
Zeng
,
Q.
,
Zheng
,
D.
, and
Yuan
,
Y.
,
2020
, “
Counter-rotating Dual-Stage Swirling Combustion Characteristics of Hydrogen and Carbon Monoxide at Constant Fuel Flow Rate
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
4979
4990
.
216.
Ihme
,
M.
,
2012
, “
On the Role of Turbulence and Compositional Fluctuations in Rapid Compression Machines: Autoignition of Syngas Mixtures
,”
Combust. Flame
,
159
(
4
), pp.
1592
1604
.
217.
García-Armingol
,
T.
,
Sobrino
,
Á
,
Luciano
,
E.
, and
Ballester
,
J.
,
2016
, “
Impact of Fuel Staging on Stability and Pollutant Emissions of Premixed Syngas Flames
,”
Fuel
,
185
, pp.
122
132
.
218.
Zhang
,
H.
,
Zhang
,
Z.
,
Xiong
,
Y.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2018
, “
Experimental and Numerical Investigations of MILD Combustion in a Model Combustor Applied for Gas Turbine
,”
Vol. 4B Combustion Fuel Emission
,
American Society of Mechanical Engineers
, pp.
1
10
.
219.
Zheng
,
X.
,
Xiong
,
Y.
,
Liu
,
Y.
,
Lei
,
F.
, and
Xiao
,
Y.
,
2020
, “
Emission Characteristics and Visualization of an Axial-Fuel-Staged MILD Combustor
,”
Combust. Sci. Technol.
,
1
, pp.
1
22
.
220.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2017
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(2), p. 022004.
221.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiyama
,
Y.
, and
Hayashi
,
A.
,
2015
, “
Performance of Multiple-Injection Dry Low-NOx Combustors on Hydrogen-Rich Syngas Fuel in an IGCC Pilot Plant
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091504
.
222.
Asai
,
T.
,
Akiyama
,
Y.
, and
Dodo
,
S.
,
2017
, “Development of a State-of-the-Art Dry Low NOx Gas Turbine Combustor for IGCC with CCS,”
Recent Adv. Carbon Capture Storage
,
InTech
,
USA
, pp.
3
30
.
223.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability& Flexibility for 7HA Class Heavy Duty gas Turbine Engine
,”
Proceedings of the ASME Turbo Exposition 4A-2017
, pp.
1
10
.
224.
Bulysova
,
L. A.
,
Berne
,
A. L.
,
Vasil’ev
,
V. D.
,
Gutnik
,
M. N.
, and
Gutnik
,
M. M.
,
2018
, “
Study of Sequential Two-Stage Combustion in a Low-Emission Gas Turbine Combustion Chamber
,”
Therm. Eng.
,
65
(
11
), pp.
806
817
.
225.
Kousheshi
,
N.
,
Yari
,
M.
,
Paykani
,
A.
,
Saberi Mehr
,
A.
, and
de la Fuente
,
G. F.
,
2020
, “
Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine
,”
Energies
,
13
(
1
), p.
212
.
226.
Burtsev
,
S. A.
,
Eletskiy
,
I. A.
, and
Kochurov
,
D. S.
,
2019
, “
Gas Stratification Application in Closed-Cycle gas Turbines
,”
AIP Conference Proceedings
, p.
070007
.
227.
Koutmos
,
P.
,
Paterakis
,
G.
,
Dogkas
,
E.
, and
Karagiannaki
,
C.
,
2012
, “
The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration
,”
J. Combust.
,
2012
, pp.
1
12
.
228.
Gopan
,
A.
,
Kumfer
,
B. M.
,
Phillips
,
J.
,
Thimsen
,
D.
,
Smith
,
R.
, and
Axelbaum
,
R. L.
,
2014
, “
Process Design and Performance Analysis of a Staged, Pressurized Oxy-Combustion (SPOC) Power Plant for Carbon Capture
,”
Appl. Energy
,
125
, pp.
179
188
.
229.
Duan
,
L.
,
Li
,
L.
,
Liu
,
D.
, and
Zhao
,
C.
,
2019
, “
Fundamental Study on Fuel-Staged Oxy-Fuel Fluidized bed Combustion
,”
Combust. Flame
,
206
, pp.
227
238
.
230.
Görgülü
,
A.
,
Yağlı
,
H.
,
Koç
,
Y.
, and
Koç
,
A.
,
2020
, “
Comprehensive Analysis of the Effect of Water Injection on Performance and Emission Parameters of the Hydrogen Fuelled Recuperative and Non-Recuperative Gas Turbine System
,”
Int. J. Hydrogen Energy
,
45
(
58
), pp.
34254
34267
.
231.
Batet
,
D.
,
Zohra
,
F. T.
,
Kristensen
,
S. B.
,
Andreasen
,
S. J.
, and
Diekhöner
,
L.
,
2020
, “
Continuous Durability Study of a High Temperature Polymer Electrolyte Membrane Fuel Cell Stack
,”
Appl. Energy
,
277
, p.
115588
.
232.
Jeppesen
,
C.
,
Araya
,
S. S.
,
Sahlin
,
S. L.
,
Andreasen
,
S. J.
, and
Kær
,
S. K.
,
2017
, “
An EIS Alternative for Impedance Measurement of a High Temperature PEM Fuel Cell Stack Based on Current Pulse Injection
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15851
15860
.
233.
Rifkin
,
J.
,
2003
,
The Hydrogen Economy: The Creation of the Worldwide Energy web and the Redistribution of Power on Earth
,
Penguin
,
Toronto
.
234.
Arat
,
H. T.
,
Sürer
,
M. G.
,
Gökpinar
,
S.
, and
Aydin
,
K.
,
2020
, “
Conceptual Design Analysis for a Lightweight Aircraft with a Fuel Cell Hybrid Propulsion System
,”
Energy Sources Part A Recovery Util. Environ. Eff.
,
1
, pp.
1
15
.
235.
Tanç
,
B.
,
Arat
,
H. T.
,
Conker
,
Ç
,
Baltacioğlu
,
E.
, and
Aydin
,
K.
,
2020
, “
Energy Distribution Analyses of an Additional Traction Battery on Hydrogen Fuel Cell Hybrid Electric Vehicle
,”
Int. J. Hydrogen Energy
,
45
(
49
), pp.
26344
26356
.
236.
Arat
,
H. T.
,
Baltacioglu
,
M. K.
,
Tanç
,
B.
,
Sürer
,
M. G.
, and
Dincer
,
I.
,
2020
, “
A Perspective on Hydrogen Energy Research, Development and Innovation Activities in Turkey
,”
Int. J. Energy Res.
,
44
(
2
), pp.
588
593
.
237.
Tanç
,
B.
,
Arat
,
H. T.
,
Baltacıoğlu
,
E.
, and
Aydın
,
K.
,
2019
, “
Overview of the Next Quarter Century Vision of Hydrogen Fuel Cell Electric Vehicles
,”
Int. J. Hydrogen Energy
,
44
(
20
), pp.
10120
10128
.
238.
Kothari
,
R.
,
Buddhi
,
D.
, and
Sawhney
,
R. L.
,
2008
, “
Comparison of Environmental and Economic Aspects of Various Hydrogen Production Methods
,”
Renewable Sustainable Energy Rev.
,
12
(
2
), pp.
553
563
.
239.
Holladay
,
J. D.
,
Hu
,
J.
,
King
,
D. L.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
.
240.
A Green, Safe, Efficient and Inexpensive Hydrogen Production System That Operates at Room Temperature in Air
,
2008
,
Catalysis Today
,
139
(
4
), pp.
244
260
.
241.
Parra
,
D.
,
Valverde
,
L.
,
Pino
,
F. J.
, and
Patel
,
M. K.
,
2019
, “
A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
279
294
.
242.
Seyed
,
E. H.
, and
Mazlan
,
A. W.
,
2016
, “
Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development
,”
Renew. Sustain. Energy Rev.
,
57
, pp.
850
866
.
243.
Dutka
,
M.
,
Ditaranto
,
M.
, and
Løvås
,
T.
,
2016
, “
NOX Emissions and Turbulent Flow Field in a Partially Premixed Bluff Body Burner with CH4 and H2 Fuels
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12397
12410
.
244.
Todd
,
D. M.
,
2016
, “
Demonstrated Applicability of Hydrogen Fuel for Gas Turbines
,”
Int. J. Hydr. Energy
,
41
(
28
), pp
12397
12410
.
245.
Brunetti
,
I.
,
Rossi
,
N.
,
Sigali
,
S.
,
Sonato
,
G.
, and
Cocchi
,
S.
,
2010
, “
ENEL’s Fusina Zero Emission Combined Cycle: Experiencing Hydrogen Combustion
,”
Powergen Eur., CiteSeer.
246.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.
247.
Ghoniem
,
A. F.
,
Annaswamy
,
A.
,
Park
,
S.
, and
Sobhani
,
Z. C.
,
2005
, “
Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion
,”
Proc. Combust. Inst.
,
30
(
II
), pp.
1765
1773
.
248.
Tuncer
,
O.
,
2013
, “
The Effect of Hydrogen Enrichment of Methane Fuel on Flame Stability and Emissions
,”
Proceedings of the 2013 International Conference on Renewable Energy Research and Applications. ICRERA 2013
, pp.
103
108
.
249.
de Ferrières
,
S.
,
El Bakali
,
A.
,
Lefort
,
B.
,
Montero
,
M.
, and
Pauwels
,
J. F.
,
2008
, “
Experimental and Numerical Investigation of Low-Pressure Laminar Premixed Synthetic Natural Gas/O2/N2 and Natural Gas/H2/O2/N2 Flames
,”
Combust. Flame
,
154
(
3
), pp.
601
623
.
250.
Sun
,
H.
,
Yan
,
P.
, and
Xu
,
Y.
,
2020
, “
Numerical Simulation on Hydrogen Combustion and Flow Characteristics of a jet-Stabilized Combustor
,”
Int. J. Hydrogen Energy
,
45
(
22
), pp.
12604
12615
.
251.
Ditaranto
,
M.
,
Heggset
,
T.
, and
Berstad
,
D.
,
2020
, “
Concept of Hydrogen Fired gas Turbine Cycle With Exhaust gas Recirculation: Assessment of Process Performance
,”
Energy
,
192
, p.
116646
.
252.
Kahraman
,
N.
,
Tangöz
,
S.
, and
Akansu
,
S. O.
,
2018
, “
Numerical Analysis of a Gas Turbine Combustor Fueled by Hydrogen in Comparison With Jet-A Fuel
,”
Fuel
,
217
, pp.
66
77
.
253.
Koç
,
Y.
,
Yağlı
,
H.
,
Görgülü
,
A.
, and
Koç
,
A.
,
2020
, “
Analysing the Performance, Fuel Cost and Emission Parameters of the 50 MW Simple and Recuperative Gas Turbine Cycles Using Natural gas and Hydrogen as Fuel
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22138
22147
.
You do not currently have access to this content.