Abstract

This study investigates the effects of oxidizer composition on stability and combustion and emission characteristics of stratified premixed CH4-O2-CO2 flames in a dual annular counter-rotating swirl (DACRS) burner for wider near blowout operability of gas turbines. Flame stratification was achieved by dividing the incoming reactants into primary and secondary streams of different oxygen fractions (OF). The effects of primary and secondary OFs (primary OFs: 60%, 50%, and 30%; and secondary OFs: 60%, 50%, 40%, and 30%) were numerically investigated at fixed inlet throat velocities and equivalence ratios (φ) of the primary and the secondary streams of 6 m/s and 2 m/s and of 0.9 and 0.55, respectively. The probability distribution function has been used to average the thermochemical properties and reaction rates. Two distinct flame shapes, the v-shaped and the conical-shaped were identified as a function of the oxidizer composition. V-shaped flames with enhanced flow mixing, strong inner and outer recirculation zones (IRZ and ORZ), and intensive interactions between both streams at lower Damkohler number (Da) were recorded for OFs within 30–50%. This indicates the ability of the DACRS burner to extend the lean blowout limit by holding stratified stable flames of lower OFs. The flame shape turned into a conical shape at OFs of 60–60% for both streams, the IRZ disappeared, intensive reaction rates of higher Da attained, and the flashback mechanism approached. Weak flame/flow interactions were observed at OFs higher than 50% with excessive combustion temperature near the burner tip. CH4 disappeared very close to the burner tip, indicating fast reactions.

References

1.
Carbon Capture, Utilisation and Storage—Fuels & Technologies—IEA
”.
2.
Thangaraja
,
J.
, and
Kannan
,
C.
,
2016
, “
Effect of Exhaust Gas Recirculation on Advanced Diesel Combustion and Alternate Fuels—A Review High Speed Direct Injection Number of Transfer Units Start of Injection
,”
Appl. Energy
,
180
, pp.
169
184
.
3.
Unfccc
. “
Adoption of the Paris Agreement—Paris Agreement Text English
”.
4.
Li
,
H.
,
Yan
,
J.
,
Yan
,
J.
, and
Anheden
,
M.
,
2009
, “
Impurity Impacts on the Purification Process in Oxy-Fuel Combustion Based CO2 Capture and Storage System
,”
Appl. Energy
,
86
(
2
), pp.
202
213
.
5.
Kajita
,
S.
, and
Betta
,
R. D.
,
2003
, “
Achieving Ultra Low Emissions in a Commercial 1.4 MW Gas Turbine Utilizing Catalytic Combustion
,”
Catal. Today
,
83
(
1–4
), pp.
279
288
.
6.
Ali
,
A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Hussain
,
M.
,
Mustafa Kamal
,
M.
, and
Habib
,
M. A.
,
2021
, “
Comparative Analysis of the Stability and Structure of Premixed C3H8/O2/CO2 and C3H8/O2/N2 Flames for Clean Flexible Energy Production
,”
Energy
,
214
, p.
118887
.
7.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2006
, “Introduction, Fundamental Definitions and Phenomena,”
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
Springer
,
Berlin/Heidelberg
, pp.
1
8
.
8.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.
9.
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
,
Mansir
,
I. B.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2018
, “
Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines
,”
Energy Fuels
,
32
(
2
), pp.
979
1004
.
10.
Nemitallah
,
M. A.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2020
, “Operability of Fuel/Oxidizer-Flexible Gas Turbine Combustors,”
Fluid Mechanics and Its Applications
,
M. Castro, ed.
,
122
,
Springer
,
New York
, pp.
259
319
.
11.
Taamallah
,
S.
,
Dagan
,
Y.
,
Chakroun
,
N.
,
Shanbhogue
,
S. J.
,
Vogiatzaki
,
K.
, and
Ghoniem
,
A. F.
,
2019
, “
Helical Vortex Core Dynamics and Flame Interaction in Turbulent Premixed Swirl Combustion: A Combined Experimental and Large Eddy Simulation Investigation
,”
Phys. Fluids
,
31
(
2
), p.
025108
.
12.
Watanabe
,
H.
,
Shanbhogue
,
S. J.
,
Taamallah
,
S.
,
Chakroun
,
N. W.
, and
Ghoniem
,
A. F.
,
2016
, “
The Structure of Swirl-Stabilized Turbulent Premixed CH4/Air and CH4/O2/CO2 Flames and Mechanisms of Intense Burning of Oxy-Flames
,”
Combust. Flame
,
174
, pp.
111
119
.
13.
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
,
Lo
,
A.
, and
Schuller
,
T.
,
2017
, “
A Comparison Between the Stabilization of Premixed Swirling CO2-Diluted Methane Oxy-Flames and Methane/Air Flames
,”
Fuel
,
201
, pp.
156
164
.
14.
Amato
,
A.
,
Hudak
,
B.
,
D’carlo
,
P.
,
Noble
,
D.
,
Scarborough
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Methane Oxycombustion for Low CO2 Cycles: Blow-off Measurements and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061503
.
15.
Marsh
,
R.
,
Runyon
,
J.
,
Giles
,
A.
,
Morris
,
S.
,
Pugh
,
D.
,
Valera-Medina
,
A.
, and
Bowen
,
P.
,
2017
, “
Premixed Methane Oxycombustion in Nitrogen and Carbon Dioxide Atmospheres: Measurement of Operating Limits, Flame Location and Emissions
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3949
3958
.
16.
Degenève
,
A.
,
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of a Diverging Cup on Swirl Number, Flow Pattern, and Topology of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031022
.
17.
Johansson
,
A. N.
,
2017
,
Challenges and Advantages of Stratified Combustion in Gasoline Direct-Injected Engines Challenges and Advantages of Stratified Combustion in Gasoline Direct-Injected Engines
,
Chalmers Tekniska, Hogskola
,
Sweden
.
18.
Lipatnikov
,
A. N.
,
2017
, “
Stratified Turbulent Flames: Recent Advances in Understanding the Influence of Mixture Inhomogeneities on Premixed Combustion and Modeling Challenges
,”
Prog. Energy Combust. Sci.
,
62
, pp.
87
132
.
19.
Li
,
Y.
,
Zhao
,
H.
, and
Ma
,
T.
,
2006
, “
Stratification of Fuel for Better Engine Performance
,”
Fuel
,
85
(
4
), pp.
465
473
.
20.
Nemitallah
,
M. A.
,
Azazul Haque
,
M. D.
,
Hussain
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2022
, “
Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
020801
.
21.
Kayed
,
H.
,
Mohamed
,
A.
,
Yehia
,
M.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2019
, “
Numerical Investigation of Auto-Ignition Characteristics in Micro-Structured Catalytic Honeycomb Reactor for CH4-Air and CH4-H2-Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082209
.
22.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Said
,
S. A. M.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2022
, “
Role of Adiabatic Flame Temperature on Controlling Operability of a Micromixer-Based Gas Turbine Combustor Holding Premixed Oxy-Flames for Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102307
.
23.
Wei
,
W.
,
Yu
,
Z.
,
Zhou
,
T.
, and
Ye
,
T.
,
2018
, “
A Numerical Study of Laminar Flame Speed of Stratified Syngas/Air Flames
,”
Int. J. Hydrogen Energy
,
43
(
18
), pp.
9036
9045
.
24.
Shi
,
X.
,
Chen
,
J.-Y.
, and
Chen
,
Z.
,
2016
, “
Numerical Study of Laminar Flame Speed of Fuel-Stratified Hydrogen/Air Flames
,”
Combust. Flame
,
163
, pp.
394
405
.
25.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Lin
,
Y.
, and
Sung
,
C.-J.
,
2018
, “
The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121004
.
26.
Sahebjamei
,
M.
,
Amani
,
E.
, and
Nobari
,
M. R. H.
,
2019
, “
Numerical Analysis of Radial and Angular Stratification in Turbulent Swirling Flames
,”
Energy
,
173
, pp.
523
539
.
27.
Gruber
,
A.
,
Richardson
,
E. S.
,
Aditya
,
K.
, and
Chen
,
J. H.
,
2018
, “
Direct Numerical Simulations of Premixed and Stratified Flame Propagation in Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110507
.
28.
Santhosh
,
R.
, and
Basu
,
S.
,
2015
, “
Transitions and Blow-Off of Unconfined Non-Premixed Swirling Flame
,”
Combust. Flame
,
164
, pp.
1
18
.
29.
Roy
,
R.
, and
Gupta
,
A. K.
,
2022
, “
Measurement of Lean Blowoff Limits in Swirl-Stabilized Distributed Combustion With Varying Heat Release Intensities
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082301
.
30.
Mousavi
,
S. M.
,
Kamali
,
R.
,
Sotoudeh
,
F.
,
Karimi
,
N.
, and
Jeung
,
I.-S.
,
2020
, “
Numerical Investigation of the Effects of Swirling Hot Co-Flow on MILD Combustion of a Hydrogen–Methane Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112301
.
31.
Yang
,
W.
,
Wang
,
B.
,
Lei
,
S.
,
Wang
,
K.
,
Chen
,
T.
,
Song
,
Z.
,
Ma
,
C.
,
Zhou
,
Y.
, and
Sun
,
L.
,
2019
, “
Combustion Optimization and NOx Reduction of a 600 MWe Down-Fired Boiler by Rearrangement of Swirl Burner and Introduction of Separated Over-Fire Air
,”
J. Clean. Prod.
,
210
, pp.
1120
1130
.
32.
Agarwal
,
A. K.
,
2021
, “
Effect of Swirl Ratio on Charge Convection, Temperature Stratification, and Combustion in Gasoline Compression Ignition Engine Effect of Swirl Ratio on Charge Convection, Temperature Stratification, and Combustion in Gasoline Compression Ignition Engine
,”
Phys. Fluids
,
33
(
8
), p.
085113
.
33.
Zeng
,
Q.
,
Zheng
,
D.
, and
Yuan
,
Y.
,
2020
, “
Counter-Rotating Dual-Stage Swirling Combustion Characteristics of Hydrogen and Carbon Monoxide at Constant Fuel Flow Rate
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
4979
4990
.
34.
Nemitallah
,
M. A.
,
Imteyaz
,
B.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2019
, “
Experimental and Computational Study on Stability Characteristics of Hydrogen-Enriched Oxy-Methane Premixed Flames
,”
Appl. Energy
,
250
, pp.
433
443
.
35.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous Oxy-Fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transf.
,
111
(
14
), pp.
2084
2094
.
36.
Shakeel
,
M. R.
,
Sanusi
,
Y. S.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Numerical Modeling of Oxy-Methane Combustion in a Model Gas Turbine Combustor
,”
Appl. Energy
,
228
, pp.
68
81
.
37.
Chen
,
L.
, and
Ghoniem
,
A. F.
,
2012
, “
Simulation of Oxy-Coal Combustion in a 100 kWth Test Facility Using RANS and LES: A Validation Study
,”
Energy Fuels
,
26
(
8
), pp.
4783
4798
.
38.
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2019
, “
Experimental and Numerical Investigations of Structure and Stability of Premixed Swirl-Stabilized CH4/O2/CO2 Flames in a Model Gas Turbine Combustor
,”
Energy Fuels
,
33
(
3
), pp.
2526
2537
.
39.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), p.
399
411
.
40.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2007
, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, Vol.
47918
, pp.
181
187
.
41.
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2001
, “
Effects of Fuel Composition on Flammability Limit of a Lean Premixed Combustor
,”
ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
, Vol.
78514
, p.
V002T01A007
.
42.
Williams
,
T. C.
,
Shaddix
,
C. R.
, and
Schefer
,
R. W.
,
2007
, “
Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor
,”
Combust. Sci. Technol.
,
180
(
1
), pp.
64
88
.
43.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.
You do not currently have access to this content.