Abstract

The shortage of fossil fuels has been growing at a faster pace every year, which is the reason why it is necessary to switch to alternative fuels without making significant modifications to diesel engines. Because it satisfies the standards, biodiesel can serve as an efficient alternative to fuels derived from petroleum. Although biofuels may be produced from a wide variety of edible sources, the development of biofuels from non-edible sources has been more beneficial in terms of both the economical approach and the performance of the fuel. The addition of the non-carbonous source of nanoparticles is able to significantly increase the performance of the engine. The experimental investigation was carried out in a variety of chicken waste biodiesel blends that also contained titanium oxides at the rate of 50 ppm and 100 ppm. The used biodiesel blends were CWB10% (90% diesel + 10% chicken biodiesel), CWB20% (80% diesel + 20% chicken biodiesel), and nanoparticles were added at the rate of 5 ppm and 10 ppm. It was necessary to estimate the performance, emission, and combustion parameters of the utilized chicken waste biodiesel in order to arrive at an accurate assessment of its quality as a fuel. When comparing the outcomes of using biodiesel with those of using nanoparticles at two different ppm concentrations, the pure diesel results were utilized as a point of comparison. According to the findings, the application of biodiesel led to results that were just average. However, when titanium oxide was included in the mix, the outcomes of the experiment were much enhanced.

References

1.
Berner
,
R. A.
,
2003
, “
The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition
,”
Nature
,
426
(
6964
), pp.
323
326
.
2.
Shanmuganathan
,
Rajasree
, et al
,
2023
, “
Spirulina Microalgae Blend With Biohydrogen and Nanocatalyst TiO2 and Ce2O3 as Step Towards Emission Reduction: Promoter or Inhibitor
,”
Fuel
,
334
, p.
126791
.
3.
Epping
,
R.
,
Kerkering
,
S.
, and
Andersson
,
J. T.
,
2014
, “
Influence of Different Compound Classes on the Formation of Sediments in Fossil Fuels During Aging
,”
Energy Fuels
,
28
(
9
), pp.
5649
56
.
4.
Adeyemi
,
I.
,
Meribout
,
M.
, and
Khezzar
,
L.
,
2022
, “
Recent Developments, Challenges, and Prospects of Ultrasound-Assisted Oil Technologies
,”
Ultrason. Sonochem.
,
82
, p.
105902
.
5.
Jacobson
,
M. Z.
,
von Krauland
,
A. K.
,
Coughlin
,
S. J.
,
Dukas
,
E.
,
Nelson
,
A. J.
,
Palmer
,
F. C.
, and
Rasmussen
,
K. R.
,
2022
, “
Low-Cost Solutions to Global Warming, Air Pollution, and Energy Insecurity for 145 Countries
,”
Energy Environ. Sci.
,
15
(
8
), pp.
3343
3359
.
6.
Yang
,
J.
,
Hao
,
Y.
, and
Feng
,
C.
,
2021
, “
A Race Between Economic Growth and Carbon Emissions: What Play Important Roles Towards Global Low-Carbon Development?
,”
Energy Econ.
,
100
, p.
105327
.
7.
Stokes
,
L. C.
, and
Breetz
,
H. L.
,
2018
, “
Politics in the US Energy Transition: Case Studies of Solar, Wind, Biofuels and Electric Vehicles Policy
,”
Energy Pol.
,
113
, pp.
76
86
.
8.
Holmatov
,
B.
, and
Hoekstra
,
A. Y.
,
2020
, “
The Environmental Footprint of Transport by Car Using Renewable Energy
,”
Earth’s Future
,
8
(
2
), p.
e2019EF001428
.
9.
Hamzah
,
H. Z.
, and
Safian
,
S. S.
,
2022
, “Assessing Consumers’ Preferences in Purchasing Green Vehicles: An Economic Valuation Approach,”
Shifting Economic, Financial and Banking Paradigm
,
Springer
,
Cham
, pp.
105
117
.
10.
Byun
,
J.
,
Kwon
,
O.
,
Park
,
H.
, and
Han
,
J.
,
2021
, “
Food Waste Valorization to Green Energy Vehicles: Sustainability Assessment
,”
Energy Environ. Sci.
,
14
(
7
), pp.
3651
63
.
11.
Singh
,
D.
,
Sharma
,
D.
,
Soni
,
S. L.
,
Sharma
,
S.
,
Sharma
,
P. K.
, and
Jhalani
,
A.
,
2020
, “
A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel
,”
Fuel
,
262
, p.
116553
.
12.
Xia
,
C.
,
Van Le
,
Q.
,
Chinnathambi
,
A.
,
Salmen
,
S. H.
,
Alharbi
,
S. A.
, and
Tola
,
S.
,
2021
, “
Role of ZnO and Fe2O3 Nanoparticle on Synthetic Saline Wastewater on Growth, Nutrient Removal and Lipid Content of Chlorella Vulgaris for Sustainable Production of Biofuel
,”
Fuel
,
300
, p.
120924
.
13.
Prabhahar
,
M.
,
Alharbi
,
S. A.
,
Almoallim
,
H. S.
,
Prakash
,
S.
,
Kumar
,
M. S.
,
Surendrababu
,
K.
,
Sendilvelan
,
S.
,
Bhaskar
,
K.
,
Maroušek
,
J.
, and
Anderson
,
A.
,
2023
, “
Trade-Off Characteristic Between Soot and Oxides of Nitrogen Emission With Pre-Injected Diesel and Biodiesel in a SICI-CIDI Engine
,”
Fuel
,
331
, p.
125624
.
14.
Al Zaabi
,
A.
,
Raj
,
A.
,
Elkadi
,
M.
,
Anjum
,
D.
,
Prabhu
,
A.
,
Pena
,
G. D.
,
Li
,
L.
,
George
,
A.
, and
Al Shebli
,
M. N.
,
2022
, “
Variation in Sooting Characteristics and Cetane Number of Diesel With the Addition of a Monoterpene Biofuel, α-Pinene
,”
Fuel
,
314
, p.
123082
.
15.
Sharma
,
A.
,
Kodgire
,
P.
, and
Kachhwaha
,
S. S.
,
2019
, “
Biodiesel Production From Waste Cotton-Seed Cooking Oil Using Microwave-Assisted Transesterification: Optimization and Kinetic Modeling
,”
Renewable Sustainable Energy Rev.
,
116
, p.
109394
.
16.
Sangkharak
,
K.
,
Mhaisawat
,
S.
,
Rakkan
,
T.
,
Paichid
,
N.
, and
Yunu
,
T.
,
2020
, “
Utilization of Mixed Chicken Waste for Biodiesel Production Using Single and Combination of Immobilized Lipase as a Catalyst
,”
Biomass Convers. Biorefin.
,
12
(
5
), pp.
1465
1478
.
17.
Dawood
,
S.
,
Koyande
,
A. K.
,
Ahmad
,
M.
,
Mubashir
,
M.
,
Asif
,
S.
,
Klemeš
,
J. J.
,
Bokhari
,
A.
, et al
,
2021
, “
Synthesis of Biodiesel From Non-Edible (Brachychiton Populneus) Oil in the Presence of Nickel Oxide Nanocatalyst: Parametric and Optimisation Studies
,”
Chemosphere
,
278
, p.
130469
.
18.
Nuhu
,
S.
, and
Kovo
,
A.
,
2015
, “
Production and Characterization of Biodiesel From Chicken Fat
,”
Scholarly J. Agric. Sci.
,
5
, pp.
22
29
.
19.
Yi-Chia
,
L.
,
Sekar
,
M.
,
Chinnathambi
,
A.
,
Nasif
,
O.
,
Gavurová
,
B.
,
Jhanani
,
G. K.
,
Brindhadevi
,
K.
, and
Chi
,
N. T.
,
2022
, “
Role of Chicken Fat Waste and Hydrogen Energy Ratio as the Potential Alternate Fuel With Nano-Additives: Insights Into Resources and Atmospheric Remediation Process
,”
Environ. Res.
,
216
, p.
114742
.
20.
Kirubakaran
,
M.
, and
Selvan
,
V. A.
,
2018
, “
A Comprehensive Review of Low Cost Biodiesel Production From Waste Chicken Fat
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
390
401
.
21.
Sai Akhil
,
U.
, and
Alagumalai
,
A.
,
2019
, “
A Short Review on Valorization of Slaughterhouse Wastes for Biodiesel Production
,”
ChemistrySelect
,
4
(
45
), pp.
13356
62
.
22.
Wang
,
C.
,
Bhatia
,
S. K.
,
Manigandan
,
S.
,
Yang
,
R.
,
Alharbi
,
S. A.
,
Nasif
,
O.
,
Brindhadevi
,
K.
, and
Zhou
,
B.
,
2022
, “
Comparative Assessment of Waste Cooking, Chicken Waste and Waste Tire Biodiesel Blends on Performance and Emission Characteristics
,”
Fuel
,
320
, p.
123859
.
23.
Senthil Kumar
,
A.
,
Karthikeyan
,
L.
,
Alharbi
,
S. A.
, and
Salmen
,
S. H.
,
2023
, “
Assessment of the Engine Vibration and Noise Characteristics of an Unmodified Direct Injection Engine Powered With Non-Feedstock Citrullus Lanatus Seed Oil
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
010902
.
24.
Thanh
,
N. C.
,
Askary
,
A. E.
,
Elfasakhany
,
A.
, and
Nithya
,
S.
,
2021
, “
Exergy and Energy Analyses of the Spirulina Microalgae Blends in a Direct Injection Engine at Variable Engine Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120908
.
25.
Shirzad
,
M.
,
Panahi
,
H. K.
,
Dashti
,
B. B.
,
Rajaeifar
,
M. A.
,
Aghbashlo
,
M.
, and
Tabatabaei
,
M.
,
2019
, “
A Comprehensive Review on Electricity Generation and GHG Emission Reduction Potentials Through Anaerobic Digestion of Agricultural and Livestock/Slaughterhouse Wastes in Iran
,”
Renewable Sustainable Energy Rev.
,
111
, pp.
571
594
.
26.
Anupong
,
W.
,
On-uma
,
R.
,
Jutamas
,
K.
,
Gavurová
,
B.
,
Chinnathambi
,
A.
,
Alahmadi
,
T. A.
,
Sekar
,
M.
,
Brindhadevi
,
K.
, and
Pugazhendhi
,
A.
,
2023
, “
Utilization of Enriched Hydrogen Blends in the Diesel Engine With MgO Nanoparticles for Effective Engine Performance and Emission Control
,”
Fuel
,
334
, p.
126552
.
27.
Chakraborty
,
R.
,
Gupta
,
A. K.
, and
Chowdhury
,
R.
,
2014
, “
Conversion of Slaughterhouse and Poultry Farm Animal Fats and Wastes to Biodiesel: Parametric Sensitivity and Fuel Quality Assessment
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
120
134
.
28.
Srinivasan
,
G. R.
,
Shankar
,
V.
,
Chandra Sekharan
,
S.
,
Munir
,
M.
,
Balakrishnan
,
D.
,
Mohanam
,
A.
, and
Jambulingam
,
R.
,
2020
, “
Influence of Fatty Acid Composition on Process Optimization and Characteristics Assessment of Biodiesel Produced From Waste Animal Fat
,”
Energy Sources A: Recovery Util. Environ. Eff.
29.
Dinesh
,
R.
, and
Retnam
,
S. J.
,
2022
, “
Effects of Hydrogen and Chicken Waste Blends in the Internal Combustion Engines for Superior Engine Performance and Emission Characteristics Assisted With Graphite Oxide
,”
Aircr. Eng. Aerosp. Technol
.
30.
Ge
,
S.
,
Brindhadevi
,
K.
,
Xia
,
C.
,
Elesawy
,
B. H.
,
Elfasakhany
,
A.
,
Unpaprom
,
Y.
, and
Van Doan
,
H.
,
2021
, “
Egg Shell Catalyst and Chicken Waste Biodiesel Blends for Improved Performance, Combustion and Emission Characteristics
,”
Fuel
,
306
, p.
121633
.
You do not currently have access to this content.