Abstract

The air-assisted atomizer used in a two-stroke aviation engine has two separate operation sequences, namely the fuel injection and air injection, in contrast to the synchronous fuel/air injection of conventional effervescent atomizers for continuous combustion engines. This work presents a numerical flow modeling to explore the effects of these two injection sequences on the effervescent spray formation, using the combined methodology of Eulerian–Eulerian multiphase technique and Shear-Stress Transport k–ω turbulence model. The transient fuel delivery in the internal fuel passage of the atomizer and the effects of the injection sequences on the developments of the droplet sprays were studied. Three characteristic times T1, T2, and T3 were introduced to specify the fuel injection duration, air injection duration, and the time interval between these two injection sequences, respectively. The results showed that the most important role of T1 is to meter fuel mass loading, and T2 plays the dominant role in anchor-shaped spray structure. For the air-injection sequence, there is a critical time, T3c, which is defined as the minimum opening time of the air injector, for the complete ejection of the fuel in the atomizer, which shows a linear correlation to T2, but is weakly related to T1.

References

1.
Sirignano
,
W. A.
, and
Mehring
,
C.
,
2000
, “
Review of Theory of Distortion and Disintegration of Liquid Streams
,”
Prog. Energy Combust.
,
26
(
4–6
), pp.
609
655
.
2.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
.
3.
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Computational Investigations of Spray Atomization and Evaporation Under Cold-Start Conditions of a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112305
.
4.
Hiroyasu
,
H.
,
2000
, “
Spray Breakup Mechanism From the Hole-Type Nozzles and Its Applications
,”
At. Sprays
,
10
(
3–5
), pp.
511
527
.
5.
Saccullo
,
M.
,
Nygren
,
A.
,
Benham
,
T.
, and
Denbratt
,
I.
,
2021
, “
Alcohol Flexible HD Single Cylinder Diesel Engine Tests With Separate Dual High Pressure Direct Fuel Injection
,”
Fuel
,
294
, p.
120478
.
6.
Lee
,
T. K.
,
Park
,
H.
,
Hyun
,
J.
,
Lee
,
C.
, and
Song
,
H. H.
,
2019
, “
Applicability of High-Pressure Direct-Injected Methane Jet for a Pure Compression-Ignition Engine Operation
,”
Fuel
,
251
, pp.
428
437
.
7.
Dash
,
S. K.
,
Lingfa
,
P.
,
Das
,
P. K.
,
Saravanan
,
A.
,
Dash
,
D.
, and
Bharaprasad
,
B.
,
2023
, “
Effect of Injection Pressure Adjustment Towards Performance, Emission and Combustion Analysis of Optimal Nahar Methyl Ester Diesel Blend Powered Agricultural Diesel Engine
,”
Energy
,
263
, p.
125831
.
8.
Robertson
,
L. X.
, and
Schaschke
,
C. J.
,
2010
, “
Combined High Pressure and Low Temperature Viscosity Measurement of Biodiesel
,”
Energy Fuels
,
24
(
2
), pp.
1293
1297
.
9.
Arunkumar
,
G.
,
Dhavare
,
P.
,
Alharbi
,
S. A.
,
Nasif
,
O.
,
Strunecky
,
O.
, and
Subramani
,
N.
,
2023
, “
Effect of Injection Pressure on Spray Cone and Penetration Angle for Enhanced Fuel Atomization of Various Blended Viscous Fluid: A Numerical Modeling
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012303
.
10.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032201
.
11.
Stiehl
,
B.
,
Genova
,
T.
,
Otero
,
M.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Fuel Stratification Influence on NOx Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122303
.
12.
Yu
,
Y.
,
2019
, “
Experimental Study on Effects of Ethanol-Diesel Fuel Blended on Spray Characteristics Under Ultra-High Injection Pressure up to 350 MPa
,”
Energy
,
186
, p.
115768
.
13.
Darzi
,
M.
,
Johnson
,
D.
,
Ulishney
,
C.
, and
Clark
,
N.
,
2018
, “
Low Pressure Direct Injection Strategies Effect on a Small SI Natural Gas Two-Stroke Engine’s Energy Distribution and Emissions
,”
Appl. Energy
,
230
, pp.
1585
602
.
14.
Yang
,
B.
,
Duan
,
Q.
,
Liu
,
B.
, and
Zeng
,
K.
,
2020
, “
Parametric Investigation of Low Pressure Dual-Fuel Direct Injection on the Combustion Performance and Emissions Characteristics in a RCCI Engine Fueled With Diesel and CH4
,”
Fuel
,
260
, p.
116408
.
15.
Liu
,
R.
,
Huang
,
K.
,
Qiao
,
Y.
,
Ji
,
H.
, and
Wu
,
H.
,
2023
, “
Atomization Characteristics of Low-Volatility Heavy Fuel for Low-Pressure Direct Injection Aviation Piston Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042304
.
16.
Sovani
,
S. D.
,
Sojka
,
P. E.
, and
Lefebvre
,
A. H.
,
2001
, “
Effervescent Atomization
,”
Prog. Energy Combust.
,
27
(
4
), pp.
483
521
.
17.
Duret
,
P.
,
Ecomard
,
A.
, and
Audinet
,
M.
,
1988
, “
A New Two-Stroke Engine With Compressed-Air Assisted Fuel Injection for High Efficiency Low Emissions Applications
,”
SAE Trans.
,
880176
, pp.
230
244
.
18.
Duret
,
P. P.
,
1988
,
Device and Method for Injecting Fuel Into an Engine, Assisted by Compressed Air or Gas: US 4716877[P]. 1988-01-05
.
19.
Jiang
,
X.
,
Siamas
,
G. A.
,
Jagus
,
K.
, and
Karayiannis
,
T. G.
,
2010
, “
Physical Modelling and Advanced Simulations of Gas–Liquid Two-Phase Jet Flows in Atomization and Sprays
,”
Prog. Energy Combust.
,
36
(
2
), pp.
131
167
.
20.
Ghasemi
,
A.
,
Li
,
X.
,
Hong
,
Z.
, and
Yun
,
S.
,
2020
, “
Breakup Mechanisms in Air-Assisted Atomization of Highly Viscous Pyrolysis Oils
,”
Energy Convers. Manage.
,
220
, p.
113122
.
21.
Wu
,
Z.
,
Jiang
,
S.
,
Wang
,
L.
, and
Zhang
,
Y.
,
2020
, “
Thermophysical Properties of Steam–Air Under High Temperature and High Pressure
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042001
.
22.
Zaremba
,
M.
,
Weiß
,
L.
,
Malý
,
M.
,
Wensing
,
M.
,
Jedelský
,
J.
, and
Jícha
,
M.
,
2017
, “
Low-Pressure Twin-Fluid Atomization: Effect of Mixing Process on Spray Formation
,”
Int. J. Multiph. Flow
,
89
, pp.
277
289
.
23.
Elsihy
,
E. S.
,
Salama
,
M. M.
,
Shahein
,
M. A.
,
Moneib
,
H. A.
, and
Abd El-Rahman
,
M. K.
,
2021
, “
Combustion Characteristics of Ultrafine Coal Particles-Light Diesel Oil Mixtures in a Cylindrical Horizontal Furnace
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072302
.
24.
Vlachos
,
N. A.
,
2003
, “
Studies of Wavy Stratified and Stratified/Atomization Gas-Liquid Flow
,”
ASME J. Energy Resour. Technol.
,
125
(
2
), pp.
131
136
.
25.
Mlkvik
,
M.
,
Stähle
,
P.
,
Schuchmann
,
H. P.
,
Gaukel
,
V.
,
Jedelsky
,
J.
, and
Jicha
,
M.
,
2015
, “
Twin-Fluid Atomization of Viscous Liquids: The Effect of Atomizer Construction on Breakup Process, Spray Stability and Droplet Size
,”
Int. J. Multiph. Flow
,
77
, pp.
19
31
.
26.
Li
,
Z.
,
Wu
,
Y.
,
Cai
,
C.
,
Zhang
,
H.
,
Gong
,
Y.
,
Takeno
,
K.
, et al
,
2012
, “
Mixing and Atomization Characteristics in an Internal-Mixing Twin-Fluid Atomizer
,”
Fuel
,
97
, pp.
306
314
.
27.
Chin
,
J. S.
,
1995
, “
Effervescent Atomization and Internal Mixing Air Assist Atomization
,”
Int. J. Turbo Jet Engines.
,
12
(
2
), pp.
119
128
.
28.
Ferreira
,
M. E.
,
Teixeira
,
J. C. F.
,
Bates
,
C. J.
, and
Bowen
,
P. J.
,
2001
, “
Detailed Investigation of the Influence of Fluid Viscosity on the Performance Characteristics of Plain-Orifice Effervescent Atomizers
,”
At. Sprays
,
11
(
2
), p.
18
.
29.
Tamaki
,
N.
,
Shimizu
,
M.
, and
Hiroyasu
,
H.
,
2005
, “
Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer
,”
Trans. Jpn. Soc. Mech. Eng. B.
,
71
(
712
), pp.
3017
3024
.
30.
Konstantinov
,
D.
,
Marsh
,
R.
,
Bowen
,
P. J.
, and
Crayford
,
A.
,
2010
, “
Effervescent Atomization for Industrial Energy-Technology Review
,”
At. Sprays
,
20
(
6
), pp.
525
552
.
31.
Kourmatzis
,
A.
,
Lowe
,
A.
, and
Masri
,
A. R.
,
2016
, “
Combined Effervescent and Airblast Atomization of a Liquid Jet
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
66
76
.
32.
Pizziol
,
B.
,
Costa
,
M.
,
Panão
,
M. O.
, and
Silva
,
A.
,
2018
, “
Multiple Impinging Jet Air-Assisted Atomization
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
303
310
.
33.
Jin
,
S. H.
,
Brear
,
M. J.
,
Zakis
,
G.
,
Watson
,
H. C.
, and
Carlisle
,
H.
,
2005
, “
Effect of Chamber Pressure on the Spray From an Air-Assisted, Direct Fuel Injector
,”
Proceedings of the 5th Asia-Pacific Conference on Combustion
,
Adelaide, Australia
,
July 17–20
, pp.
193
196
.
34.
Jin
,
S. H.
,
Brear
,
M.
,
Watson
,
H.
, and
Brewster
,
S.
,
2008
, “
An Experimental Study of the Spray From an Air-Assisted Direct Fuel Injector
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
222
(
10
), pp.
1883
1894
.
35.
Wu
,
H.
,
Wang
,
L.
,
Wu
,
Y.
,
Sun
,
B.
,
Zhao
,
Z.
, and
Liu
,
F.
,
2019
, “
Spray Performance of Air-Assisted Kerosene Injection in a Constant Volume Chamber Under Various in-Cylinder GDI Engine Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
762
769
.
36.
Wu
,
H.
,
Zhang
,
F.
, and
Zhang
,
Z.
,
2021
, “
Fundamental Spray Characteristics of Air-Assisted Injection System Using Aviation Kerosene
,”
Fuel
,
286
, p.
119420
.
37.
Du
,
B.
,
Zhao
,
Z.
,
Yang
,
Z.
, and
Wang
,
S.
,
2022
, “
Experimental Investigation on the Effects of Fuel–Air Mixture Temperature on the Air-Assisted Kerosene Spray Characteristics
,”
Fuel
,
324
, p.
124487
.
38.
Lotfi
,
M.
,
Chimeh
,
A. F.
,
Dabir
,
B.
, and
Mohammadi
,
A. H.
,
2022
, “
Computational Fluid Dynamics Modeling of the Pressure Drop of an Iso-Thermal and Turbulent Upward Bubbly Flow Through a Vertical Pipeline Using Population Balance Modeling Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102102
.
39.
Sureshkumar
,
J.
,
Elayaraja
,
R.
,
Mallikarjuna
,
J. M.
, and
Ganesan
,
V.
,
2015
, “
Transient Spray Characteristics of air Assisted Fuel Injection
,”
SAE Technical Paper No. 2015-01-0920
.
40.
Maclnnes
,
J.
, and
Bracco
,
F. V.
,
1990
, “
Computation of the Spray From an Air-Assisted Fuel Injector
,”
J. Eng., SAE Trans.
, pp.
2105
2123
.
41.
Boretti
,
A. A.
,
Jin
,
S. H.
,
Zakis
,
G.
,
Brear
,
M. J.
, and
Carlisle
,
H.
,
2007
, “
Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine
,”
SAE Technical Paper No. 2007-01-1415
.
42.
Yang
,
H.
,
Chen
,
M.
,
Huang
,
L.
, and
Hu
,
C.
,
2015
, “
CFD Simulation and Experiment of Transient Spray for an Air-Assisted Injector
,”
J. Aerosp. Power
,
30
(
12
), pp.
2897
903
.
43.
Du
,
B.
, and
Zhao
,
Z.
,
2021
, “
Numerical Prediction of the Spray From an Air-Assisted Fuel Injection System via Eulerian–Lagrangian Approach
,”
Energy Rep.
,
7
, pp.
6718
6732
.
44.
Gao
,
H.
,
Zhang
,
F.
,
Zhang
,
Z.
,
Wang
,
S.
, and
Wu
,
H.
,
2019
, “
Trajectory Deviation of Target Jet of Air-Assisted Spray Under Different Conditions
,”
Fuel
,
249
, pp.
252
263
.
45.
Gao
,
H.
,
Zhang
,
F.
,
Zhang
,
Z.
,
Wang
,
E.
, and
Liu
,
B.
,
2019
, “
Experimental Investigation on the Spray Characteristic of Air-Assisted Hollow-Cone Gasoline Injector
,”
Appl. Therm. Eng.
,
151
, pp.
354
363
.
46.
Wu
,
H.
,
Zhang
,
F. J.
,
Zhang
,
Z. Y.
,
Guo
,
Z. Y.
,
Zhang
,
W. Z.
, and
Gao
,
H. L.
,
2020
, “
On the Role of Vortex-Ring Formation in Influencing Air-Assisted Spray Characteristics of n-Heptane
,”
Fuel
,
266
, p.
117044
.
47.
Hu
,
J. C.
,
Liu
,
B. L.
,
Zhang
,
C.
,
Gao
,
H. L.
,
Zhao
,
Z. F.
,
Zhang
,
F. J.
, et al
,
2019
, “
Experimental Study on the Spray Characteristics of an Air-Assisted Fuel Injection System Using Kerosene and Gasoline
,”
Fuel
,
235
, pp.
782
794
.
48.
Menter
,
F. R.
,
1992
, Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows. NASA STI/Recon Technical Report No. 93.
49.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
605
.
50.
Mukundan
,
A. A.
,
Tretola
,
G.
,
Ménard
,
T.
,
Herrmann
,
M.
,
Navarro-Martinez
,
S.
,
Vogiatzaki
,
K.
, et al
,
2021
, “
DNS and LES of Primary Atomization of Turbulent Liquid Jet Injection Into a Gaseous Crossflow Environment
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3233
3241
.
51.
Baldwin
,
E. T.
,
2016
,
Eulerian CFD Modeling of Multiphase Internal Injector Flow and External Sprays, University of Massachusetts, Amherst, MA
.
52.
Østberg
,
M.
,
Glarborg
,
P.
,
Jensen
,
A.
,
Johnsson
,
J. E.
,
Pedersen
,
L. S.
, and
Dam-Johansen
,
K.
,
1998
, “
A Model of the Coal Reburning Process
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
3027
3035
.
53.
Payri
,
R.
,
Bracho
,
G.
,
Martí-Aldaraví
,
P.
, and
Moreno
,
A.
,
2021
, “
Using Momentum Flux Measurements to Determine the Injection Rate of a Commercial Urea Water Solution Injector
,”
Flow Meas. Instrum.
,
80
, p.
101999
.
You do not currently have access to this content.