Cavitating flow around a hydrofoil was simulated using a transport equation-based model with consideration of the influence of noncondensable gases. The cavity length and the pressure distributions on the suction side can be well predicted for stable cavities using the standard renormalization-group (RNG) κ-ε turbulence model with proper noncondensable gas mass fraction. The unstable cavity shedding at lower cavitation numbers was not well predicted by the standard RNG κ-ε turbulence model. A modified RNG κ-ε turbulence model was evaluated by comparing the calculated spatial-temporal pressure distributions on the suction wall with experimental data. The results showed that the predicted cavity growth and shedding cycle and its frequency agree well with the experimental data. However, the pressure increase caused by interaction of the reentrant flow and the cavity interface is overestimated, which caused the time-averaged pressure on the front part of the hydrofoil to be overestimated. The time-averaged pressure on the rear of the hydrofoil was low because the small cavity shedding on the rear part of the cavity was not predicted.

1.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguti
,
H.
, 1992, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
0022-1120,
240
, pp.
59
96
.
2.
Delannoy
,
Y.
, and
Kueny
,
J. L.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,”
Cavitation and Multiphase Flow Forum
, Vol.
98
, pp.
153
158
.
3.
Delgosha
,
C. O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
, 2003, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
, pp.
527
548
.
4.
Delgosha
,
C. O.
,
Patella
,
F. R.
, and
Reboud
,
J. L.
, 2003, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
38
45
.
5.
Iga
,
Y.
,
Nohml
,
M.
,
Goto
,
A.
, and
Ikohagi
,
T.
, 2004, “
Numerical Analysis of Cavitation Instabilities Arising in the Three-Blade Cascade
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
419
429
.
6.
Iga
,
Y.
,
Nohml
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
, 2003, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
643
651
.
7.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part I: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
975
995
.
8.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part II: Time-Dependent Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
997
1016
.
9.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
, pp.
849
875
.
10.
Yuan
,
W.
, and
Schnerr
,
G. H.
, 2003, “
Numerical Simulation of Two-Phase Flow in Injection Nozzles: Interaction of Cavitation and External Jet Formation
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
964
969
.
11.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
12.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangham
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1992, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
0899-8213,
4
(
7
), pp.
1510
1520
.
13.
Leroux
,
J. B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
, 2004, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
94
101
.
14.
Katz
,
J.
, and
Gopalan
,
S.
, 2000, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
1070-6631,
12
(
4
), pp.
895
911
.
15.
Pham
,
T. M.
,
Larrarte
,
F.
, and
Fruman
,
D. H.
, 1999, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
289
296
.
16.
Kubota
,
S.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Meada
,
M.
, 1987, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique
,”
International Symposium on Cavitation Research Facilities and Techniques
,
Boston
, pp.
161
168
.
17.
George
,
D. L.
,
Iyer
,
C. O.
, and
Ceccio
,
S. L.
, 2000, “
Measurement of the Bubbly Flow Beneath Partial Attached Cavities Using Electrical Impedance Probes
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
151
155
.
18.
Ceccio
,
S. L.
, and
Iyer
,
C. O.
, 2002, “
The Influence of Developed Cavitation on the Flow of a Turbulent Shear Layer
,”
Phys. Fluids
1070-6631,
14
(
10
), pp.
3414
3431
.
You do not currently have access to this content.