Abstract

A unified one-dimensional (1D), steady-state flow and heat transfer model is presented for the pipeline transport of fluids at high pressures, including the supercritical (SC) conditions. The model includes a generalized temperature equation, presented here for the first time, and accounts for all of the important effects, including the property variation, viscous dissipation, Joule-Thomson (J-T) cooling, and heat exchange with the surrounding. With appropriate approximations, this model can yield all isothermal and nonisothermal pipe flow solutions reported thus far. A generalized multizone integral method is developed which solves the two resulting algebraic equations for pressure and temperature in conjunction with a property database, such as the National Institute of Standard and Technology (NIST) reference fluid thermodynamic and transport properties (REFPROP). With appropriately selected number and size of the zones and using property values at the mean temperature and pressure within each zone, this integral method can accurately predict the complex effects of the governing parameters, such as the pipe diameter and length, inlet and exit pressures, mass flowrate, J-T cooling, and inlet and surrounding temperatures. Its accuracy for small-to-large diameter pipes has been ascertained by a comparison with the numerical solutions of the differential form of governing equations that requires a large number of small grids along the pipe and the values of mean properties within each grid. Indeed, this integral model can be used for the pipeline transport at both subcritical and supercritical pressures as long as the fluid does not encounter its anomalous states and the phase-change.

References

1.
Prasad
,
V.
,
Almara
,
L. M.
, and
Wang
,
G. X.
,
2023
, “
Ultra-Long-Distance Transport of Supercritical Natural Gas (SNG) at High-Mass Flow Rates Via Pipelines Through Land, Underground, Water Bodies, and Ocean
,”
J. Gas Sci. Eng.
,
117
, p.
205053
.10.1016/j.jgsce.2023.205053
2.
Prasad
,
V.
,
Wang
,
G. X.
,
John
,
K.
,
Bostanci
,
H.
,
Sadat
,
H.
, and
Almara
,
L.
,
2023
, “
Method and Conditions for Intra- and Inter-Continental Transport of Supercritical Natural Gas (SNG) Via Pipelines Through Land, Underground, Water Bodies, and/or Ocean
,” U.S. patent application 18/364,386 and PCT application PCT/US2023/029564.
3.
Muhammed
,
N. S.
,
Gbadamosi
,
A. O.
,
Epelle
,
E. I.
,
Abdul Rasheed
,
A. A.
,
Haq
,
B.
,
Patil
,
S.
,
Al-Shehri
,
D.
, and
Kamal
,
M. S.
,
2023
, “
Hydrogen Production, Transportation, Utilization, and Storage: Recent Advances Towards Sustainable Energy
,”
J. Energy Storage
,
73
, p.
109207
.10.1016/j.est.2023.109207
4.
Groat
,
C. C.
,
2010
,
The Helium Supply Chain, in Selling the Nation's Helium Reserve
,
The National Academies Press
,
Washington DC
, Chap. II, pp.
45
53
.
5.
Caldeira
,
K.
,
Akai
,
M.
,
Brewer
,
P. G.
,
Chen
,
B.
,
Haugan
,
P. M.
,
Iwama
,
T.
,
Johnston
,
P.
, et al.,
2005
, “
Ocean Storage,” Chapter 6, Carbon Dioxide Capture and Storage
,”
Intergovernmental Panel on Climate Change (IPCC)
,
B.
Metz
, ed.,
Cambridge University Press
, New York, pp.
277
318
.
6.
Doctor
,
D.
,
Palmer
,
A.
, et al.,
2005
, “
Transport of CO2,” Chapter 4. Carbon Dioxide Capture and Storage
,”
Intergovernmental Panel on Climate Change (IPCC)
,
B.
Metz
, ed.,
Cambridge University Press
, New York, pp. 1
79
193
.
7.
Li
,
W.
, and
Yu
,
Z.
,
2021
, “
Heat Exchangers for Cooling Supercritical Carbon Dioxide and Heat Transfer Enhancement: A Review and Assessment
,”
Energy Rep.
,
7
, pp.
4085
4105
.10.1016/j.egyr.2021.06.089
8.
Chai
,
L.
, and
Tassou
,
S. A.
,
2023
, “
Performance Analysis of Heat Exchangers and Integrated Supercritical CO2 Brayton Cycle for Varying Heat Carrier, Cooling and Working Fluid Flow Rates
,”
Heat Transfer Eng.
,
44
(
16–18
), pp.
1498
1518
.10.1080/01457632.2022.2140640
9.
Reinsch
,
T.
,
Dobson
,
P.
,
Asanuma
,
H.
,
Huenges
,
E.
,
Poletto
,
F.
, and
Sanjuan
,
B.
,
2017
, “
Utilizing Supercritical Geothermal Systems: A Review of Past Ventures and Ongoing Research Activities
,”
Energy
,
5
(
1
), pp.
1
25
.https://doi.org/10.1186/s40517-017-0075-y
10.
Yamamoto
,
K.
,
Fukuda
,
M.
, and
Hanatani
,
A.
,
2021
, “
Ultrasupercritical and Advanced Ultrasupercritical Power Plants
,”
Adv. Power Boilers, JSME Series in Thermal and Nuclear Power Generation
, 2, pp.
345
390
.10.1016/B978-0-12-820360-6.00007-2
11.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 8th ed., John Wiley & Sons, Hoboken, NJ.
12.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamentals of Fluid Mechanics
, 7th ed., John Wiley & Sons, Hoboken, NJ.
13.
Finch
,
J. C.
, and
Ko
,
D. W.
,
1988
, “
Tutorial – Fluid Flow Formulas
,”
PSIG Conference Proceedings
, Toronto, ON, Canada, Oct. 20–21, Paper No.PSIG-880.https://onepetro.org/PSIGAM/proceedingsabstract/PSIG88/All-PSIG88/2504
14.
Tian
,
S. F.
, and
Adewumi
,
M. A.
,
1994
, “
Development of Analytical Design Equation for Gas Pipelines
,”
SPE Prod. Facil.
,
9
(
2
), pp.
100
106
.10.2118/24861-PA
15.
Ouyang
,
L.-B.
, and
Aziz
,
K.
,
1996
, “
Steady-State Gas Flow in Pipes
,”
J. Pet. Sci. Eng.
,
14
(
3–4
), pp.
137
158
.10.1016/0920-4105(95)00042-9
16.
Urata
,
E.
,
2013
, “
A Flow Rate Equation for Subsonic Fanno Flow
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
12
), pp.
2724
2729
.10.1177/0954406213480295
17.
Schorre
,
C. E.
,
1954
, “
Flow Temperature in a Gas Pipeline
,”
Oil Gas J.
,
52
(
9
), pp.
66
68
.
18.
Forrest
,
J. A.
,
1978
, “
Interpreting the Schorre Gas Temperature Equation
,”
Pipe Line Ind.
,
48
, pp.
58
60
.https://www.osti.gov/biblio/5624124
19.
Coulter
,
D. M.
,
1979
, “
New Equation Accurately Predicts Flowing Gas Temperatures
,”
Pipe Line Ind.
,
50
(
5
), pp.
71
73
.
20.
Coulter
,
D. M.
, and
Bardon
,
M. F.
,
1979
, “
Revised Equation Improves Flowing Gas Temperature Prediction
,”
Oil Gas J.
,
77
, pp.
107
108
.
21.
Alves
,
IN.
,
Alhanati
,
F. J. S.
, and
Shoham
,
O.
,
1992
, “
A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines
,”
SPE Prod. Eng.
,
7
(
4
), pp.
363
367
.10.2118/20632-PA
22.
Gregory
,
G. A.
,
Aziz
,
K.
, and
Moore
,
R. G.
,
1979
, “
Computer Design of Dense-Phase Pipelines
,”
AIME J. Pet. Technol.
,
31
(
1
), pp.
40
50
.10.2118/6876-PA
23.
Thorley
,
A. R. D.
, and
Tiley
,
C. H.
,
1987
, “
Unsteady and Transient Flow of Compressible Fluids in Pipelines - a Review of Theoretical and Some Experimental Studies
,”
Int. J. Heat Fluid Flow
,
8
(
1
), pp.
3
15
.10.1016/0142-727X(87)90044-0
24.
Abdolahi
,
F.
,
Mesbah
,
A.
,
Boozarjomehry
,
R. B.
, and
Svrcek
,
W. Y.
,
2007
, “
The Effect of Major Parameters on Simulation Results of Gas Pipelines
,”
Int. J. Mech. Sci.
,
49
(
8
), pp.
989
1000
.10.1016/j.ijmecsci.2006.12.001
25.
Abbaspour
,
M.
, and
Chapman
,
K. S.
,
2008
, “
Nonisothermal Transient Flow in Natural Gas Pipeline
,”
ASME J. Appl. Mech.
,
75
, p.
031018
.10.1115/1.2840046
26.
Atena
,
A.
, and
Muche
,
T.
,
2016
, “
Modeling and Simulation of Real Gas Flow in a Pipeline
,”
J. Appl. Math. Phys.
,
04
(
8
), pp.
1652
1681
.10.4236/jamp.2016.48175
27.
López-Benito
,
A.
,
Tenreiro
,
F. J. E.
, and
Gutiérrez-Pérez
,
L. C.
,
2016
, “
Steady-State Non-Isothermal Flow Model for Natural Gas Transmission in Pipes
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
10020
10037
.10.1016/j.apm.2016.06.057
28.
Osiadacz
,
A. J.
, and
Chaczykowski
,
M.
,
2001
, “
Comparison of Isothermal and Non-Isothermal Pipeline Gas Flow Models
,”
Chem. Eng. J.
,
81
(
1–3
), pp.
41
51
.10.1016/S1385-8947(00)00194-7
29.
Chaczykowski
,
M.
,
2009
, “
Sensitivity of Pipeline Gas Flow Model to the Selection of the Equation of State
,”
Chem. Eng. Res. Des.
,
87
(
12
), pp.
1596
1603
.10.1016/j.cherd.2009.06.008
30.
Chaczykowski
,
M.
,
2010
, “
Transient Flow in Natural Gas Pipeline - The Effect of Pipeline Thermal Model
,”
Appl. Math. Modell.
,
34
(
4
), pp.
1051
1067
.10.1016/j.apm.2009.07.017
31.
Helgaker
,
J. F.
,
2013
, “
Modeling transient flow in long distance offshore natural gas pipelines
,”
Doctoral thesis
, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim
.http://hdl.handle.net/11250/235408
32.
Helgaker
,
J. F.
,
Oosterkamp
,
A.
,
Langelandsvik
,
L. I.
, and
Ytrehus
,
T.
,
2014
, “
Validation of 1D Flow Model for High Pressure Offshore Natural Gas Pipelines
,”
J. Nat. Gas Sci. Eng.
,
16
, pp.
44
56
.10.1016/j.jngse.2013.11.001
33.
Langelandsvik
,
L. I.
,
2008
, “
Modeling of Natural Gas Transport and Friction Factor for Large-Scale Pipelines: Laboratory Experiments and Analysis of Operational Data
,”
Doctoral thesis
, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim
.http://hdl.handle.net/11250/233400
34.
Vargas-Vera
,
B. H.
,
Rada-Santaigo
,
A. M.
, and
Cabarcas-Simanacas
,
M. E.
,
2020
, “
Gas Transport at Dense Phase Conditions for the Development of Deepwater Fields in the Colombian Caribbean Sea
,”
CT&F-Cienc., Tecnol. Futuro
,
10
, pp.
17
32
.
35.
Zivdar
,
M.
, and
Abofarakh
,
M.
,
2021
, “
Natural Gas Transmission in Dense Phase Mode
,”
J. Gas Technol.
,
6
, pp.
45
52
.https://www.jgt.irangi.org/article_251677_b4a96fd26b9b7d0966217adc1948ad73.pdf
36.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, John Wiley & Sons, Hoboken, NJ.
37.
Sekulic
,
D. P.
, and
Shah
,
R. K.
,
2023
,
Fundamentals of Heat Exchanger Design
, 2nd ed., John Wiley & Sons, Hoboken, NJ.
38.
Anderson
,
J. D.
,
2021
,
Modern Compressible Flow With Historical Perspective
, 4th ed.,
McGraw-Hill
, New York.
39.
Almara
,
L. M.
,
Wang
,
G. X.
, and
Prasad
,
V.
,
2023
, “
Conditions and Thermophysical Properties for Transport of Hydrocarbons and Natural Gas at High Pressures: Dense Phase and Anomalous Supercritical States
,”
J. Gas Sci. Eng.
,
117
, p.
205072
.10.1016/j.jgsce.2023.205072
40.
Wang
,
G. X.
,
Almara
,
L. M.
, and
Prasad
,
V.
,
2024
, “
Thermodynamic Analysis of Anomalous Region, Critical Point, and Transition From Subcritical to Supercritical States: Applications to Van Der Waals and Five Real Fluids
,”
Phys. Fluids
,
36
, p.
026105
.10.1063/5.0179651
41.
Goldwater
,
M. H.
, and
Fincham
,
A. E.
, eds.,
1981
, “
Modeling of Gas Supply Systems
,”
Modeling of Dynamical Systems
,
H.
Nicholson
, ed.,
Peter Peregrinus LTD, Institute of Electrical Engineers
, 13, pp.
150
177
, Chap. VI.
42.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
43.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London
,
16lA
, pp.
367
381
.10.1098/rspa.1937.0150
44.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
45.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
, 4th ed., John Wiley & Sons, Hoboken, NJ.
46.
Schroeder
,
D. W.
,
2001
, “
A Tutorial on Pipe Flow Equations
,” 33rd Annual Meeting Pipeline Simulation Interest Group (
PSIG
), Salt Lake City, UT, Oct. 17–19, pp.
1
21
.https://wwweng.lbl.gov/~shuman/NEXT/MATERIALS%26COMPONENTS/Pressure_vessels/FM/compressible_pipe_flow.pdf
47.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP 10.0
,” National Institute of Standard and Technology, Gaithersburg, MD, accessed Sept. 23, 2024, https://pages.nist.gov/REFPROP-docs/
48.
Prasad
,
V.
,
Kakroo
,
K.
, and
Banerjee
,
D.
,
2022
, “
Existence of Supercritical ‘Liquid-Like’ State in Subcritical Region, Optimal Heat Transfer Enhancement, and Argon as a Non-Reacting, Non-Corroding SC Heat Transfer Fluid
,”
Heat Transfer Res.
,
53
(
9
), pp.
1
27
.10.1615/HeatTransRes.2022043095
49.
Gupta
,
S.
,
Saltanov
,
E.
, and
Pioro
,
I.
,
2014
, “
Uses of Supercritical Fluids and Their Characteristics Within Deteriorated Heat Transfer Region
,”
ASME
Paper No. ICONE22-30274.10.1115/ICONE22-30274
50.
Imre
,
A. R.
,
Deiters
,
U. K.
,
Kraska
,
T.
, and
Tiselj
,
I.
,
2012
, “
The Pseudocritical Regions for Supercritical Water
,”
Nucl. Eng. Des.
,
252
, pp.
179
183
.10.1016/j.nucengdes.2012.07.007
51.
Imre
,
A.
,
Ramboz
,
C.
,
Kraska
,
T.
, and
Deiters
,
U. K.
,
2015
, “
Anomalous Fluid Properties of Carbon Dioxide in the Supercritical Region – Application to Geological CO2 Storage and Related Hazards
,”
Environ. Earth Sci.
,
73
(
8
), pp.
4373
4384
.10.1007/s12665-014-3716-5
52.
Imre
,
A. R.
,
Groniewsky
,
A.
,
Györke
,
G.
,
Katona
,
A.
, and
Velmovszki
,
D.
,
2019
, “
Anomalous Properties of Some Fluids − With High Relevance in Energy Engineering − In Their Pseudo-Critical (Widom) Region
,”
Period. Polytech., Chem. Eng.
,
63
(
2
), pp.
276
285
.10.3311/PPch.12905
You do not currently have access to this content.