Advanced ceramics have reached a level of material development to warrant serious consideration for use in advanced heat engine designs. Typically, design requirements based on service conditions may include 25,000 h lifetimes under stresses and temperatures of up to 250 MPa and 1370°C, respectively, with probabilities of failure of <0.1 percent. To assure that materials meet these stringent requirements requires long-term testing under the service conditions. Tensile tests at 1370°C in ambient air have been conducted on silicon nitride alloys to 5000 h with reports of 10,000 h tests for silicon carbide. To provide useful data, such long-term tests must incorporate such meticulous attention to detail as: strict temperature control (±5°C); accurate temperature measurement (1 percent of the nominal temperature); close control of grip cooling (±0.1°C) and ambient environment (±0.25°C); stable, high-resolution extensometry (±0.5 μm); reliable heating (MTBF > 10,000 h) and load control (gravity-controlled, dead load), and responsive data acquisition systems (12-bit, digital collection). Data thus obtained can be used as input into design codes such as NASA CARES/LIFE to predict and confirm reliability/durability.

1.
Ohji
T.
, and
Yamauchi
Y.
, “
Long-Term Tensile Creep Testing for Advanced Ceramics
,”
J. Am. Ceram. Soc.
, Vol.
75
,
1992
, pp.
2304
2307
.
2.
Ferber
M. K.
,
Jenkins
M. G.
,
Nolan
T. A.
, and
Yeckley
R.
, “
Comparison of the Creep and Creep Rupture Performance of Two HIPed Silicon Nitride Ceramics
,”
J. Am. Ceram. Soc.
, Vol.
77
,
1994
, pp.
657
665
.
3.
Dowling, N. E., Mechanical Behaviour of Materials: Engineering Methods for Deformation, Fracture and Fatigue, Prentice Hall, Englewood, NJ, 1993.
4.
Nemeth
N. N.
,
Manderscheid
J. M.
, and
Gyekenyesi
J. P.
, “
Designing Ceramic Components for Reliability
,”
Am. Ceram. Bull.
, Vol.
68
,
1989
, pp.
2064
2072
.
5.
Nemeth
N. N.
,
Powers
L.
,
Janosik
L.
, and
Gyekenyesi
J. P.
, “
Designing Ceramic Components for Durability
,”
Am. Ceram. Soc. Bull.
, Vol.
72
,
1993
, pp.
59
69
.
6.
Snedden, J. D., and Sinclair, C. D., “Volume Effect on Creep Strength of Ceramics: Fact or Fiction,” Br. Ceramic Transactions, Vol. 91, 1992.
7.
Snedden, J. D., “Prediction of Creep Reliability of Ceramics: Some Approximate Engineering Techniques,” Br. Ceramic Transactions, Vol. 92, 1993.
8.
Ferber
M. K.
, and
Jenkins
M. G.
, “
Evaluation of the Strength and Creep-Fatigue Behaviour of a HIPed Silicon Nitride
,”
J. Am. Ceram. Soc.
, Vol.
75
,
1992
, pp.
2453
2462
.
9.
Menon
M. N.
,
Fang
H. T.
,
Wu
D. C.
,
Jenkins
M. G.
,
Ferber
M. K.
,
More
K. L.
,
Hubbard
C. M.
,
Nolan
T. A.
, “
Creep and Stress Rupture Behavior of an Advanced Silicon Nitride, Part I—Experimental Observations
,”
J. Am. Ceram. Soc.
, Vol.
77
,
1994
, pp.
1217
1227
.
10.
Chuang
T. J.
, “
Estimation of Power-Law Creep Parameters From Bend Test Data
,”
J. Mater. Scien.
, Vol.
21
,
1986
, pp.
165
175
.
11.
Ferber
M. K.
,
Jenkins
M. G.
, and
Tennery
V. J.
, “
Comparison of Tension, Compression, and Flexure Creep for Alumina and Silicon Nitride Ceramics
,”
Ceram. Eng. Sci. Proc.
, Vol.
11
,
1990
, pp.
1028
1045
.
12.
American Society for Testing and Materials, “Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures,” Committee C28 “Advanced Ceramics,” ASTM, Philadelphia, PA, 1995.
13.
ASTM STP 470A “Manual on the Use of Thermocouples in Temperature Measurement,” ASTM, Philadelphia, PA, 1960.
14.
Carroll
D. F.
,
Wiederhorn
S. M.
, and
Roberts
D. E.
, “
Technique for Tensile Creep Testing of Ceramics
,”
J. Am. Ceram. Soc.
, Vol.
72
,
1989
, pp.
1610
1614
.
This content is only available via PDF.
You do not currently have access to this content.