A novel liquefied natural gas (LNG) fueled power plant is proposed, which has virtually zero CO2 and other emissions and a high efficiency. Natural gas is fired in highly enriched oxygen and recycled CO2 flue gas. The plant operates in a quasi-combined cycle mode with a supercritical CO2 Rankine type cycle and a CO2 Brayton cycle, interconnected by the heat transfer process in the recuperation system. By coupling with the LNG evaporation system as the cycle cold sink, the cycle condensation process can be achieved at a temperature much lower than ambient, and high-pressure liquid CO2 ready for disposal can be withdrawn from the cycle without consuming additional power. Good use of the coldness exergy and internal exergy recovery produced a net energy and exergy efficiencies of a base-case cycle over 65% and 50%, respectively, which can be increased up to 68% and 54% when reheat is used. Cycle variants incorporating reheat, intercooling, and reheat+intercooling, as well as no use of LNG coldness, are also defined and analyzed for comparison. The approximate heat transfer area needed for the different cycle variants is also computed. Besides electricity and condensed CO2, the byproducts of the plant are H2O, liquid N2 and Ar.

1.
Karashima
,
N.
, and
Akutsu
,
T.
, 1982, “
Development of LNG Cryogenic Power Generation Plant
,”
Proc. of 17th IECEC
, pp.
399
404
.
2.
Angelino
,
G.
, 1978, “
The Use of Liquid Natural Gas as Heat Sink for Power Cycles
,”
J. Eng. Power
0022-0825,
100
, pp.
169
177
.
3.
Kim
,
C. W.
,
Chang
,
S. D.
, and
Ro
,
S. T.
, 1995, “
Analysis of the Power Cycle Utilizing the Cold Energy of LNG
,”
Int. J. Energy Res.
0363-907X,
19
, pp.
741
749
.
4.
Najjar
,
Y. S. H.
, and
Zaamout
,
M. S.
, 1993, “
Cryogenic Power Conversion With Regasification of LNG in a Gas Turbine Plant
,”
Energy Convers. Manage.
0196-8904,
34
, pp.
273
280
.
5.
Wong
,
W.
, 1994, “
LNG Power Recovery
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
208
, pp.
1
12
.
6.
Zhang
,
N.
, and
Cai
,
R.
, 2002, “
Principal Power Generation Schemes With LNG Cryogenic Exergy
,”
Proc. ECOS 2002 15th International Conference on Efficiency, Costs, Optimization, Simulation, and Environmental Impact of Energy Systems
,
G.
Tsatsaronis
et al.
, eds., Berlin Technical University, Berlin, pp.
334
341
.
7.
Krey
,
G.
, 1980, “
Utilization of the Cold by LNG Vaporization With Closed-Cycle Gas Turbine
,”
J. Eng. Power
0022-0825,
102
, pp.
225
230
.
8.
Agazzani
,
A.
, and
Massardo
,
A. F.
, 1999, “
An Assessment of the Performance of Closed Cycles With and Without Heat Rejection at Cryogenic Temperatures
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
458
465
.
9.
Deng
,
S.
,
Jin
,
H.
,
Cai
,
R.
, and
Lin
,
R.
, 2004, “
Novel Cogeneration Power System With Liquefied Natural Gas (LNG) Cryogenic Exergy Utilization
,”
Energy
0360-5442,
29
, pp.
497
512
.
10.
Chiesa
,
P.
, 1997, “
LNG Receiving Terminal Associated With Gas Cycle Power Plants
,” ASME Paper No. 97-GT-441.
11.
Desideri
,
U.
, and
Belli
,
C.
, 2000, “
Assessment of LNG Regasification Systems With Cogeneration
,” ASME Paper No. 2000-GT-0165.
12.
Kim
,
T. S.
, and
Ro
,
S. T.
, 2000, “
Power Augmentation of Combined Cycle Power Plants Using Cold Energy of Liquefied Natural Gas
,”
Energy
0360-5442,
25
, pp.
841
856
.
13.
Velautham
,
S.
,
Ito
,
T.
, and
Takata
,
Y.
, 2001, “
Zero-Emission Combined Power Cycle Using LNG Cold
,”
JSME Int. J., Ser. B
1340-8054,
44
, pp.
668
674
.
14.
Riemer
,
P.
, 1996, “
Greenhouse Gas Mitigation Technologies, an Overview of the CO2 Capture, Storage and Future Activities of the IEA Greenhouse Gas R&D Program
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
665
670
.
15.
Haugen
,
H. A.
, and
Eide
,
L. I.
, 1996, “
CO2 Capture and Disposal: the Realism of Large Scale Scenarios
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
1061
1066
.
16.
Yantovski
,
E. I.
,
Zvagolsky
,
K. N.
, and
Gavrilenko
,
V. A.
, 1992, “
Computer Exergonomics of Power Plants Without Exhaust Gases
,”
Energy Convers. Manage.
0196-8904,
33
, pp.
405
412
.
17.
Shao
,
Y.
, and
Golomb
,
D.
, 1996, “
Power Plants With CO2 Capture Using Integrated Air Separation and Flue Gas Recycling
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
903
908
.
18.
Shao
,
Y.
,
Golomb
,
D.
, and
Brown
,
G.
, 1995, “
Natural Gas Fired Combined Cycle Power Plant With CO2 Capture
,”
Energy Convers. Manage.
0196-8904,
36
, pp.
1115
1128
.
19.
Wall
,
G.
,
Yantovski
,
E.
,
Lindquist
,
L.
, and
Tryggstad
,
J.
, 1995, “
A Zero Emission Combustion Power Plant for Enhanced Oil Recovery
,”
Energy
0360-5442,
20
, pp.
823
828
.
20.
Yantovski
,
E. I.
, 1996, “
Stack Downward Zero Emission Fuel-Fired Power Plants Concept
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
867
877
.
21.
Yantovski
,
E. I.
, and
Gorski
,
J.
, 2000, “
Further Elaboration of Quasi-combined Zero-Emission Power Cycle
,”
Proc. ECOS 2000 13th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Aspects of Energy and Process Systems
,
G. G.
Hirs
, ed., University of Twente,
Enschede
, Netherlands, pp.
1083
1092
.
22.
Yantovski
,
E. I.
,
Zvagolsky
,
K. N.
, and
Gavrilenko
,
V. A.
, 1995, “
The COOPERATE–Demo Power Cycle
,”
Energy Convers. Manage.
0196-8904,
36
, pp.
861
864
.
23.
Mathieu
,
P.
,
Dubuisson
,
R.
,
Houyou
,
S.
, and
Nihart
,
R.
, 2000, “
A Quasi_Zero Emission O2 ∕C O2 Combined Cycle
,”
Proc. ECOS 2000 13th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Aspects of Energy and Process Systems
,
G. G.
Hirs
, ed., University of Twente,
Enschede
, Netherlands, pp.
1071
1081
.
24.
Fioravanti
,
A.
,
Lombardi
,
L.
, and
Manfrida
,
G.
, 2000, “
An Innovative Energy Cycle With Zero CO2 Emissons
,”
Proc. ECOS 2000 13th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Aspects of Energy and Process Systems
,
G. G.
Hirs
, ed., University of Twente,
Eschende
, Netherlands, pp.
1059
1070
.
25.
Mathieu
,
P.
, and
Nihart
,
R.
, 1999, “
Zero-Emission MATIANT Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
116
120
.
26.
Staicovici
,
M. D.
, 2002, “
Further Research Zero CO2 Emission Power Production: the ‘COOLENERG’ Process
,”
Energy
0360-5442,
27
, pp.
831
844
.
27.
Aspen Plus®, Aspen Technology, Inc.
, version 11.1, http://www.aspentech.com/http://www.aspentech.com/
28.
Hewitt
,
G. F.
,
Shires
,
G. L.
, and
Bott
,
T. R.
, 1993, “
Process Heat Transfer
,”
CRC Press
and
Begell House
, Boca Raton, FL.
29.
Dunbar
,
W. R.
, and
Lior
,
N.
, 1994, “
Sources of Combustion Irreversibility
”,
Combust. Sci. Technol.
0010-2202,
103
, pp.
41
61
.
30.
Mathieu
,
P.
, and
Nihart
,
R.
, 1999, “
Sensitivity Analysis of the MATIANT Cycle
”,
Energy Convers. Manage.
0196-8904,
40
, pp.
1687
1700
.
You do not currently have access to this content.