Complex multidomain dynamic systems demand reliable health monitoring to minimize breakdowns and downtime, thereby enabling cost savings and increased operator safety. Diagnostic and prognostic strategies monitor a system’s transient and steady-state operations, detecting deviations from normal operating scenarios and warning operators of potential system anomalies. System diagnostics detect, identify, and isolate a system fault while prognostics offer strategies to predict system behavior at a future operating time to define the useful period before failure criterion is reached. This paper presents the development and the experimental application of two methods to predict the system behavior based on trends in performance. Statistical regression concepts have been used to analyze dynamic plant signals, and based on these results, future plant operation was estimated. Wavelet transforms were used to condition the signal, and the denoised signals were subsequently forecast. The case study presented here applies the two methodologies to the operational data from a simple cycle 85MW General Electric gas turbine. Those operating data were used to train and validate the algorithms. A comparison of the two methodologies reveals that the wavelet forecast is better than the statistical strategy with lower forecasting error. The developed approaches may be used in parallel with a diagnostic algorithm to monitor gas turbine system behavior.

1.
Sekhon
,
R.
,
Bassily
,
H.
, and
Wagner
,
J.
, 2006, “
Real Time Prognostic Strategies With Application to Stationary Gas Turbines
,” ASME Paper No. IMECE 2006-14068.
2.
Sekhon
,
R.
,
Bassily
,
H.
,
Wagner
,
J.
, and
Gaddis
,
J.
, 2006, “
Stationary Gas Turbines—A Real Time Dynamic Model With Experimental Validation
,”
Proceedings of the American Control Conference
,
Minneapolis, MN, Jun.
, pp.
1838
1844
, Paper No. WEC13.1.
3.
Lebold
,
M.
,
McClintic
,
K.
,
Campbell
,
R.
,
Byington
,
C.
, and
Maynard
,
K.
, 2000, “
Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics
,”
Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology
,
Virginia Beach, VA
, May, pp.
623
634
.
4.
Atlas
,
L.
,
Bloor
,
G.
,
Brotherton
,
T.
,
Howard
,
L.
,
Jaw
,
L.
,
Kacprzynski
,
G.
,
Karsai
,
G.
,
Mackey
,
R.
,
Mesick
,
J.
,
Reuter
,
R.
, and
Roemer
,
M.
, 2001, “
An Evolvable Tri-Reasoner IVHM System
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
, Mar., Vol.
6
, pp.
63023
63037
.
5.
Brotherton
,
T.
,
Jahns
,
G.
,
Jacobs
,
J.
, and
Wroblewski
,
D.
, 2000, “
Prognosis of Faults in Gas Turbine Engines
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
, Mar. Vol.
6
, pp.
163
171
.
6.
Wang
,
P.
, and
Vachtsevanos
,
G.
, 2001, “
Fault Prognosis Using Dynamic Wavelet Neural Networks
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
15
(
4
), pp.
349
365
.
7.
Schwabacher
,
M.
, 2005, “
A Survey of Data Driven Prognostics
,” Paper No. AIAA 2005-7002.
8.
Gulen
,
S.
,
Griffin
,
P.
, and
Paolucci
,
S.
, 2002, “
Real Time on Line Performance Diagnostics of Heavy-Duty Industrial Gas Turbines
,”
J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
910
921
.
9.
Veer
,
T.
,
Haglerod
,
K.
, and
Bolland
,
O.
, 2004, “
Measured Data Correction for Improved Fouling and Degradation Analysis of Offshore Gas Turbines
,”
Proceedings of the ASME Turbo Expo
,
Vienna, Austria
, Jun., Vol.
7
, pp.
823
830
.
10.
Byington
,
C.
,
Roemer
,
M.
, and
Galie
,
T.
, 2002, “
Prognostic Enhancements to Diagnostic Systems for Improved Condition-Based Maintenance
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
, Mar., Vol.
6
, pp.
2815
2824
.
11.
Jardim
,
R.
,
Barata
,
M.
,
Assis
,
L.
,
Alavro
,
J.
, and
Garcao
,
A.
, 1996, “
Application of Stochastic Modelling to Support Predictive Maintenance for Industrial Environments
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
Beijing, China
, Oct., Vol.
1
, pp.
117
122
.
12.
Greitzer
,
F.
, and
Ferryman
,
T.
, 2003, “
Predicting Remaining Life of Mechanical Systems
,”
Proceedings of the ASNE Intelligent Ship Symposium
,
Philadelphia, PA,
. Apr.
13.
Barlas
,
I.
,
Zhang
,
G.
,
Propes
,
N.
, and
Vachtsevanos
,
G.
, 2003, “
Addressing Uncertainty and Confidence in Prognosis
,”
Proceedings of the ASNE Intelligent Ship Symposium
,
Philadelphia, PA
, Apr.
14.
Mannapov
,
R.
, 1992, “
Predicting the Remaining Life of Equipment From Damage Statistics
,”
Journal of Chemical & Petroleum Engineering
,
28
(
9
), pp.
543
546
.
15.
Kim
,
D.
, and
Mead
,
H.
, 1999, “
Remaining Life Assessment of Refinery Heater Tubes
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
,
Boston, MA
, Aug., Vol.
388
, pp.
361
366
.
16.
Dong
,
M.
, and
He
,
D.
, 2004, “
Hidden Semi-Markov Models for Machinery Health Diagnosis and Prognosis
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
32
, pp.
199
206
.
17.
Sulieman
,
H.
,
McLellan
,
P.
, and
Bacon
,
D.
, 2001, “
A Profile-Based Approach to Parametric Sensitivity Analysis of Nonlinear Regression Models
,”
Technometrics
0040-1706,
43
(
4
), pp.
425
433
.
18.
Brockwell
,
P.
, and
Davis
,
R.
, 2002,
Introduction to Time Series and Forecasting
,
Springer-Verlag
,
New York
.
19.
McAlpin
,
R.
,
Tally
,
P.
,
Bernstein
,
H.
, and
Holm
,
R.
, 2003, “
Failure Analysis of Inlet Guide Vanes
,”
J. Eng. Gas Turbines Power
0742-4795,
125
(
1
), pp.
236
240
.
20.
Aboufadel
,
E.
, and
Schlicker
,
S.
, 1999,
Discovering Wavelets
,
Wiley Interscience
,
New York
.
21.
Addison
,
P.
, 2002,
The Illustrated Wavelet Transform Handbook
,
Institute of Physics
,
Philadelphia, PA
.
22.
Sun
,
Z.
,
Wang
,
R.
,
Jiang
,
X.
, and
Xu
,
M.
, 2005, “
Application of Wavelet Transform to Recursive Prediction of Vibration Signals
,”
J. Harbin Inst. Technol.
1005-9113,
12
(
5
), pp.
483
493
.
23.
Feng
,
C.
,
Yu
,
Z.
, and
Kusiak
,
A.
, 2006, “
Selection and Validation of Predictive Regression and Neural Network Models Based on Designed Experiments
,”
IIE Trans.
0740-817X,
38
(
1
), pp.
13
23
.
24.
Guo
,
J.
,
Chen
,
Q.
,
Hu
,
W.
, and
Xu
,
S.
, 2003, “
Nonlinear Generalized Predictive Control Based on Inverse System Using Wavelet Networks
,”
Proceedings of the International Conference on Wavelet Analysis and Its Applications
, pp.
883
889
.
China
, May, Vol.
2
.
25.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
You do not currently have access to this content.