Lean NOx traps (LNTs) are often used to reduce NOx on smaller diesel passenger cars where urea-based selective catalytic reduction (SCR) systems may be difficult to package. However, the performance of LNTs at temperatures above 400 °C needs to be improved. Rapidly pulsed reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of the LNT in order to improve its performance at higher temperatures and space velocities. This approach was developed by Toyota and was originally called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) (Bisaiji et al., 2011, “Development of Di-Air—A New Diesel deNOx System by Adsorbed Intermediate Reductants,” SAE Int. J. Fuels Lubr., 5(1), pp. 380–388). Four important parameters were identified to maximize NOx conversion while minimizing fuel penalty associated with hydrocarbon injections in RPR operation: (1) flow field and reductant mixing uniformity, (2) pulsing parameters including the pulse frequency, duty cycle, and magnitude, (3) reductant type, and (4) catalyst composition, including the type and loading of precious metal and NOx storage material, and the amount of oxygen storage capacity (OSC). In this study, RPR performance was assessed between 150 °C and 650 °C with several reductants including dodecane, propane, ethylene, propylene, H2, and CO. Under RPR conditions, H2, CO, C12H26, and C2H4 provided approximately 80% NOx conversion at 500 °C; however, at 600 °C the conversions were significantly lower. The NOx conversion with C3H8 was low across the entire temperature range. In contrast, C3H6 provided greater than 90% NOx conversion over a broad range of 280–630 °C. This suggested that the high-temperature NOx conversion with RPR improves as the reactivity of the hydrocarbon increases.

References

1.
Stanton
,
D.
,
Charlton
,
S.
, and
Vajapeyazula
,
P.
,
2013
, “
Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions
,”
SAE Int. J. Engines
,
6
(
3
), pp.
1757
1770
.
2.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
3.
Johnson
,
T.
,
2013
, “
Vehicular Emissions in Review
,”
SAE Int. J. Engines
,
6
(
2
), pp.
699
715
.
4.
Johnson
,
T. V.
,
2007
, “
Diesel Emission Control in Review
,”
SAE
Paper No. 2007-01-0233.
5.
Johnson
,
T. V.
,
2008
, “
Diesel Emission Control in Review
,”
SAE
Technical Paper No. 2008-01-0069.
6.
Takahashi
,
N.
,
Shinjoh
,
H.
,
Iijima
,
T.
,
Suzuki
,
T.
,
Yamazaki
,
K.
,
Yokota
,
K.
,
Suzuki
,
H.
,
Miyoshi
,
N.
,
Matsumoto
,
S.-I.
, and
Tanizawa
,
T.
,
1996
, “
The New Concept 3-Way Catalyst for Automotive Lean-Burn Engine: NOx Storage and Reduction Catalyst
,”
Catal. Today
,
27
(
1–2
), pp.
63
69
.
7.
Olsson
,
L.
,
Blint
,
R. J.
, and
Fridell
,
E.
,
2005
, “
Global Kinetic Model for Lean NOx Traps
,”
Ind. Eng. Chem. Res.
,
44
(
9
), pp.
3021
3032
.
8.
Sharma
,
M.
,
Harold
,
M.
, and
Balakotaiah
,
V.
,
2005
, “
Analysis of Periodic Storage and Reduction of NOx in Catalytic Monoliths
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
6264
6277
.
9.
Roy
,
S.
, and
Baiker
,
A.
,
2009
, “
NOx Storage–Reduction Catalysis: From Mechanism and Materials Properties to Storage–Reduction Performance
,”
Chem. Rev.
,
109
(
9
), pp.
4054
4091
.
10.
Bisaiji
,
Y.
,
Yoshida
,
K.
,
Inoue
,
M.
,
Umemoto
,
K.
, and
Fukuma
,
T.
,
2011
, “
Development of Di-Air—A New Diesel deNOx System by Adsorbed Intermediate Reductants
,”
SAE Int. J. Fuels Lubr.
,
5
(
1
), pp.
380
388
.
11.
Li
,
Y.
,
Roth
,
S.
,
Dettling
,
J.
, and
Beutel
,
T.
,
2001
, “
Effects of Lean/Rich Timing and Nature of Reductant on the Performance of a NOx Trap Catalyst
,”
Top. Catal.
,
16
(
1–4
), pp.
139
144
.
12.
Dujardin
,
C.
,
Kouakou
,
A.
,
Fresnet
,
F.
, and
Granger
,
P.
,
2013
, “
Reaction Pathways for Ammonia Formation on Lean NOx Trap/Reduction System: A Spectroscopic Infrared Investigation
,”
Top. Catal.
,
56
(
1
), pp.
151
156
.
13.
Larson
,
R. S.
,
Pihl
,
J. A.
,
Chakravarthy
,
V. K.
,
Toops
,
T. J.
, and
Daw
,
C. S.
,
2008
, “
Microkinetic Modeling of Lean NOx Trap Chemistry Under Reducing Conditions
,”
Catal. Today
,
136
(
1–2
), pp.
104
120
.
14.
Granger
,
P.
,
Lecomte
,
J.
,
Dathy
,
C.
,
Leclercq
,
L.
, and
Leclercq
,
G.
,
1998
, “
Kinetics of the CO+ NO Reaction Over Rhodium and Platinum–Rhodium on Alumina—II: Effect of Rh Incorporation to Pt
,”
J. Catal.
,
175
(
2
), pp.
194
203
.
15.
Bisaiji
,
Y.
,
Yoshida
,
K.
,
Inoue
,
M.
,
Takagi
,
N.
, and
Fukuma
,
T.
,
2012
, “
Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1310
1316
.
16.
Inoue
,
M.
,
Bisaiji
,
Y.
,
Yoshida
,
K.
,
Takagi
,
N.
, and
Fukuma
,
T.
,
2013
, “
deNOx Performance and Reaction Mechanism of the Di-Air System
,”
Top. Catal.
,
56
(
1–8
), pp.
3
6
.
17.
Perng
,
C. C.
,
Easterling
,
V. G.
, and
Harold
,
M. P.
,
2014
, “
Fast Lean-Rich Cycling for Enhanced NOx Conversion on Storage and Reduction Catalysts
,”
Catal. Today
,
231
, pp.
125
134
.
18.
Zheng
,
Y.
,
Li
,
M.
,
Harold
,
M.
, and
Luss
,
D.
,
2015
, “
Enhanced Low-Temperature NOx Conversion by High-Frequency Hydrocarbon Pulsing on a Dual Layer LNT-SCR Catalyst
,”
SAE Int. J. Engines
,
8
(
3
), pp.
1117
1125
.
19.
Reihani
,
A.
,
Corson
,
B.
,
Hoard
,
J. W.
,
Fisher
,
G. B.
,
Smirnov
,
E.
,
Roemer
,
D.
,
Theis
,
J.
, and
Lambert
,
C.
,
2016
, “
Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1630
1641
.
20.
West
,
B.
,
Huff
,
S.
,
Parks
,
J.
,
Lewis
,
S.
,
Choi
,
J.-S.
,
Partridge
,
W.
, and
Storey
,
J.
,
2004
, “
Assessing Reductant Chemistry During In-Cylinder Regeneration of Diesel Lean NOx Traps
,”
SAE
Technical Paper No. 2004-01-3023.
21.
Pukelsheim
,
F.
,
1994
, “
The Three Sigma Rule
,”
Am. Stat.
,
48
(
2
), pp.
88
91
.
22.
Granger
,
P.
,
Dhainaut
,
F.
,
Pietrzik
,
S.
,
Malfoy
,
P.
,
Mamede
,
A.-S.
,
Leclercq
,
L.
, and
Leclercq
,
G.
,
2006
, “
An Overview: Comparative Kinetic Behaviour of Pt, Rh and Pd in the NO+ CO and NO+ H2 Reactions
,”
Top. Catal.
,
39
(
1–2
), pp.
65
76
.
23.
Lesage
,
T.
,
Verrier
,
C.
,
Bazin
,
P.
,
Saussey
,
J.
,
Malo
,
S.
,
Hedouin
,
C.
,
Blanchard
,
G.
, and
Daturi
,
M.
,
2004
, “
Comparison Between a Pt–Rh/Ba/Al2O3 and a Newly Formulated NOx-Trap Catalysts Under Alternate Lean–Rich Flows
,”
Top. Catal.
,
30
(
1–4
), pp.
31
36
.
24.
DiGiulio
,
C. D.
,
Pihl
,
J. A.
,
Choi
,
J.-S.
,
Parks
,
J. E.
,
Lance
,
M. J.
,
Toops
,
T. J.
, and
Amiridis
,
M. D.
,
2014
, “
NH3 Formation Over a Lean NOx Trap (LNT) System: Effects of Lean/Rich Cycle Timing and Temperature
,”
Appl. Catal. B: Environ.
,
147
, pp.
698
710
.
25.
Pihl
,
J. A.
,
Parks
,
J. E.
,
Daw
,
C. S.
, and
Root
,
T. W.
,
2006
, “
Product Selectivity During Regeneration of Lean NOx Trap Catalysts
,”
SAE
Technical Paper No. 2006-01-3441.
26.
Zheng
,
J.
,
Strohm
,
J. J.
, and
Song
,
C.
,
2008
, “
Steam Reforming of Liquid Hydrocarbon Fuels for Micro-Fuel Cells. Pre-Reforming of Model Jet Fuels Over Supported Metal Catalysts
,”
Fuel Process. Technol.
,
89
(
4
), pp.
440
448
.
27.
Burch
,
R.
, and
Millington
,
P.
,
1995
, “
Selective Reduction of Nitrogen Oxides by Hydrocarbons Under Lean-Burn Conditions Using Supported Platinum Group Metal Catalysts
,”
Catal. Today
,
26
(
2
), pp.
185
206
.
28.
Burch
,
R.
,
Breen
,
J.
, and
Meunier
,
F.
,
2002
, “
A Review of the Selective Reduction of NOx With Hydrocarbons Under Lean-Burn Conditions With Non-Zeolitic Oxide and Platinum Group Metal Catalysts
,”
Appl. Catal. B: Environ.
,
39
(
4
), pp.
283
303
.
29.
Hepburn
,
J.
,
Kenney
,
T.
,
McKenzie
,
J.
,
Thanasiu
,
E.
, and
Dearth
,
M.
,
1998
, “
Engine and Aftertreatment Modeling for Gasoline Direct Injection
,”
SAE
Technical Paper No. 982596.
30.
Theis
,
J. R.
,
Ura
,
J. A.
, and
McCabe
,
R. W.
,
2007
, “
The Effects of Platinum and Rhodium on the Functional Properties of a Lean NOx Trap
,”
SAE
Technical Paper No. 2007-01-1055.
You do not currently have access to this content.