Rotary ultrasonic machining (RUM) has been used to machine both brittle and ductile materials as well as composite materials. There are numerous reported studies about the effects of various process variables on output responses. However, the current literature contains few articles about the measurement methods of vibration amplitude in RUM and about the effects of process variables on vibration amplitude. The lack of such knowledge has made it difficult to explain some experimentally observed phenomena in RUM and degraded the creditability of some experimental results with RUM. This paper, for the first time, presents a measurement method capable of measuring vibration amplitude during RUM machining. It also reports RUM experimental results on effects of cutting tool, ultrasonic power, workpiece material, tool rotation speed, and feedrate on ultrasonic amplitude. This study will fill some blanks in the literature and provide plausible explanations to some seemingly contradictory results reported in the literature.

References

1.
Prabhakar
,
D.
, 1992, “
Machining Advanced Ceramic Materials Using Rotary Ultrasonic Machining Process
,” M.S. thesis, University of Illinois at Urbana-Champaign, IL.
2.
Schwartz
,
M.
, 1992,
Handbook of Structural Ceramics
,
McGraw-Hill
,
New York
.
3.
Dam
,
H.
,
Jensen
,
J.
, and
Quist
,
P.
, 1993, “
Surface Characterization of Ultrasonic Machined Ceramics With Diamond Impregnated Sonotrode
,”
Proceedings of the International Conference on Machining of Advanced Materials
,
Gaithersburg, MD
, July 20–22, pp.
125
133
.
4.
Tyrrell
,
W. R.
, 1970, “
New Method for Machining Hard and Brittle Materials
,”
SAMPE Q.
,
1
(
2
), pp.
55
59
.
5.
Pei
,
Z. J.
,
Khanna
,
N.
, and
Ferreira
,
P. M.
, 1995, “
Rotary Ultrasonic Machining of Structural Ceramics: A Review
,”
Ceram. Eng. Sci. Proc.
,
16
(
1
), pp.
259
278
.
6.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2006, “
Rotary Ultrasonic Machining of Titanium Alloy: Effects of Machining Variables
,”
Mach. Sci. Technol.
,
10
(
3
), pp.
301
321
.
7.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2007, “
Rotary Ultrasonic Machining of Titanium Alloy (Ti-6Al-4V): Effects of Tool Variables
,”
Int. J. Precis. Technol.
,
1
(
1
), pp.
85
96
.
8.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2005, “
Rotary Ultrasonic Machining of Titanium Alloy: A Feasibility Study
,”
Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–11, pp.
885
892
.
9.
Cong
,
W. L.
,
Pei
,
Z. J.
,
Churi
,
N.
, and
Wang
,
Q. G.
, 2009, “
Rotary Ultrasonic Machining of Stainless Steel: Design of Experiments
,”
Trans. North Am. Manuf. Res. Inst. SME
,
37
, pp.
261
268
.
10.
Cong
,
W. L.
,
Pei
,
Z. J.
, Van
Vleet
,
E.
, and
Wang
,
Q. G.
, 2009, “
Surface Roughness in Rotary Ultrasonic Machining of Stainless Steels
,”
Proceedings of the 2009 Industrial Engineering Research Conference
,
Miami, FL
, May 30 –June 3.
11.
Li
,
Z. C.
,
Jiao
,
Y.
, and
Deines
,
T. W.
, 2005, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1402
1411
.
12.
Qin
,
N.
,
Pei
,
Z. J.
,
Treadwell
,
C.
, and
Guo
,
D. M.
, 2009, “
Physics-Based Predictive Cutting Force Model in Ultrasonic-Vibration-Assisted Grinding for Titanium Drilling
,”
J. Manuf. Sci. Eng.
,
131
(
4
), pp.
1
9
.
13.
Hueners
,
B. W.
, 1983 “
Absolute Ultrasonic Amplitude Measurement, Calibration and Troubleshooting of a Wire Bonder Using a Laser Interferometer
,”
Int. J. Hybrid Microelectron.
,
6
(
1
), pp.
167
170
.
14.
Bindal
,
V. N.
,
Jain
,
S. K.
, and
Kumar
,
Y. A.
, 1986, “
A Laser Interferometer for Vibration Amplitude Measurement of Power Ultrasonic Sources
,”
Indian J. Pure Appl. Phys.
24
(
12
), pp.
584
587
.
15.
Boucaud
,
A.
,
Felix
,
N.
,
Pizarro
,
L.
, and
Patat
,
F.
, 1999, “
High Power Low Frequency Ultrasonic Transducer: Vibration Amplitude Measurements by an Optical Interferometric Method
,”
Proceedings of IEEE Ultrasonics Symposium
,
Caesars Tahoe
,
NV
, Oct 17–20, pp.
1095
1098
.
16.
Yoneda
,
K.
,
Tawata
,
M.
, and
Hattori
,
S.
, 1979, “
Measurement of Very Small Vibration Amplitude in Ultrasonic Transducer by Means of a Laser Probe
,”
Proceedings of IEEE Ultrasonics Symposium
,
New Orleans, LA
, Sept. 26–28, pp.
51
55
.
17.
Leonov
,
G. V.
,
Khmelev
,
V. N.
,
Savin
,
I. I.
, and
Abramenko
,
D. S.
, 2005, “
Automation of the Amplitude Measurement Process of Ultrasonic Oscillatory Systems Irradiating Surface
,”
Proceedings of the 6th Annual International Siberian Workshop and Tutorials on Electron Devices and Materials
,
Erlagol, Altai
,
Russia
, July 1–5, pp.
64
67
.
18.
Khmelev
,
V. N.
,
Abramenko
,
D. S.
,
Barsukov
,
R. V.
, and
Lebedev
,
A. N.
, 2008, “
Usage Features of Contact and Noncontact Measuring Methods of Oscillation Amplitude During Adjustment Process of Ultrasonic Devices
,”
Proceedings of the 9th International Workshop and Tutorials on Electron Devices and Materials
,
Novosibirsk, Novosibirsk
,
Russia
, July 1–5, pp.
223
226
.
19.
Yarnitsky
,
Y.
, and
Braun
,
S.
, 1967, “
Vibration-Amplitude Measurement on Ultrasonic Drill
,”
Microtecnic
,
21
(
3
), pp.
297
298
.
20.
Yost
,
W. T.
, and
Cantrell
,
J. H.
, 1992, “
Absolute Ultrasonic Displacement Amplitude Measurements With A Submersible Electrostatic Acoustic Transducer
,”
Rev. Sci. Instrum.
,
63
(
9
), pp.
4182
4188
.
21.
Polyakov
,
Z. I.
, and
Khlopotunova
,
N. A.
, 1982, “
Meter for Monitoring the Vibration Amplitude of an Ultrasonic Tool
,”
Instrum. Exp. Tech.
,
25
(
5
), pp.
1304
1308
.
22.
Lazara
,
K.
,
Zayas
,
J. M.
, and
Zajac
,
A.
, 1975, “
X-Ray Measurement of an Ultrasonic Wave Amplitude in a Crystal
,”
J. Acoust. Soc. Am.
,
58
(
2
), pp.
471
474
.
23.
Philip
,
P. K.
, 1971, “
Study of the Performance Characteristics of an Explosive Quick-Stop Device for Freezing Cutting Action
,”
Int. J. Mach. Tool Des. Res.
,
11
(
2
), pp.
133
144
.
24.
Vorm
,
T.
, 1976, “
Development of a Quick-Stop Device and an Analysis of the Frozen-Chip Technique
,”
Int. J. Mach. Tool Des. Res.
,
16
(
4
), pp.
241
250
.
25.
Griffiths
,
B. J.
, 1986, “
Development of a Quick-Stop Device for Use in Metal Cutting Hole Manufacturing Processes
,”
Int. J. Mach. Tool Des. Res.
,
26
(
2
), pp.
191
203
.
You do not currently have access to this content.