Abstract

In this investigation, (Ti-Mo-Zr)60Co20Cr20, (Ti-Mo-Zr)60Al30Si10 (non-magnesium-based), and (Ti-Mo-Zr)60Cu10Mg30 (magnesium-based) high-entropy alloy (HEA) samples are prepared via mechanical milling and then by spark plasma sintering technique. The microstructure morphology is examined using x-ray diffraction and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The microstructure reveals that there would be a strong correlation between phase structure and sustainability for localized corrosion behavior. The lowest crystallite size of the magnesium-based HEA powder mixture suggests the highest corrosion resistance because of the solid-solution face-centered cubic and body-centered cubic phases for 20 h of milling. The correlation between the microstructural morphology and functional properties such as hardness, corrosion resistance, and potentiodynamic parameters are compared for both magnesium-based and non-magnesium-based HEAs and analyzed to elucidate their suitability for lightweight vehicle applications.

References

1.
Száraz
Z.
,
Palček
P.
,
Chalupová
M.
, and
Trojanova
Z.
, “
Magnesium Alloys Based Composites
,” in
Magnesium Alloys: Design, Processing and Properties
, ed.
Czerwinski
F.
(
London
:
IntechOpen
,
2011
),
501
526
, https://doi.org/10.5772/13747
2.
Kumar
A.
and
Gupta
M.
, “
An Insight into Evolution of Light Weight High Entropy Alloys: A Review
,”
Metals
6
, no. 
9
(September
2016
): 199, https://doi.org/10.3390/met6090199
3.
Alshataif
Y. A.
,
Sivasankaran
S.
,
Al-Mufadi
F. A.
,
Alaboodi
A. S.
, and
Ammar
H. R.
, “
Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review
,”
Metals and Materials International
26
, no. 
8
(August
2020
):
1099
1133
, https://doi.org/10.1007/s12540-019-00565-z
4.
Ghiban
B.
,
Popescu
G.
,
Dumitrescu
D.
, and
Soare
V.
, “
New High Entropy Alloy for Biomedical Applications
,”
Key Engineering Materials
750
(
2017
):
180
183
, https://doi.org/10.4028/www.scientific.net/KEM.750.180
5.
Li
Y.
and
Zhang
Y.
, “
Light-Weight and Flexible High-Entropy Alloys
,” in
Engineering Steels and High Entropy-Alloys
, ed.
Sharma
A.
,
Duriagina
Z.
, and
Kumar
S.
(
London
:
IntechOpen
,
2019
), https://doi.org/10.5772/intechopen.88332
6.
Giwa
A. M.
, “
Microstructure and Small-Scale Deformation of Al0.7CoCrFeNi High-Entropy Alloy
” (PhD diss.,
California Institute of Technology
,
2019
).
7.
Sharma
A.
,
Oh
M. C.
, and
Ahn
B.
, “
Microstructural Evolution and Mechanical Properties of Non-Cantor AlCuSiZnFe Lightweight High Entropy Alloy Processed by Advanced Powder Metallurgy
,”
Materials Science and Engineering: A
797
(October
2020
): 140066, https://doi.org/10.1016/j.msea.2020.140066
8.
Yang
X.
,
Zhang
Y.
, and
Liaw
P. K.
, “
Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys
,”
Procedia Engineering
36
(
2012
):
292
298
, https://doi.org/10.1016/j.proeng.2012.03.043
9.
Chae
M. J.
,
Sharma
A.
,
Oh
M. C.
, and
Ahn
B.
, “
Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy
,”
Metals and Materials International
27
, no. 
4
(April
2021
):
629
638
, https://doi.org/10.1007/s12540-020-00823-5
10.
Gupta
M.
and
Tun
K. S.
, “
An Insight into the Development of Light Weight High Entropy Alloys
,”
Research & Development in Material Science
2
, no. 
2
(
2017
):
123
125
, https://doi.org/10.31031/RDMS.2017.02.000534
11.
Karnati
K. K.
,
Katta
V. K.
,
Punna
E.
,
Venkata
S. N. N.
, and
Ravuri
B. R.
, “
Influence of Heat-Treated Temperature and Its Rate on Structural, Mechanical, and Corrosion Properties of (Ti-Mo-Zr)60CoXCrY High Entropy Alloys for Lightweight Applications
,”
Phase Transitions
95
, no. 
4
(
2022
):
290
307
, https://doi.org/10.1080/01411594.2022.2041636
12.
Karnati
K. K.
,
Punna
E.
,
Venkata
S. N. N.
, and
Ravuri
B. R.
, “
(Ti-Mo-Zr)60AlxSiy High Entropy Alloy: Correlation Between Microstructure, Mechanical, and Corrosion Properties
,”
Silicon
14
, no. 
16
(November
2022
):
10637
10650
, https://doi.org/10.1007/s12633-022-01779-4
13.
Xing
Q.-W.
and
Zhang
Y.
, “
Amorphous Phase Formation Rules in High-Entropy Alloys
,”
Chinese Physics B
26
, no. 
1
(January
2017
): 018104, https://doi.org/10.1088/1674-1056/26/1/018104
14.
Varalakshmi
S.
,
Kamaraj
M.
, and
Murty
B. S.
, “
Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying
,”
Metallurgical and Materials Transactions A
41
, no. 
10
(October
2010
):
2703
2709
, https://doi.org/10.1007/s11661-010-0344-x
15.
Guo
S.
, “
Phase Selection Rules for Cast High Entropy Alloys: An Overview
,”
Materials Science and Technology
31
, no. 
10
(
2015
):
1223
1230
, https://doi.org/10.1179/1743284715Y.0000000018
16.
Zhou
Y.
,
Jin
X.
,
Du
X. Y.
,
Zhang
L.
, and
Li
B. S.
, “
Comparison of the Structure and Properties of Equiatomic and Non-equiatomic Multicomponent Alloys
,”
Materials Science and Technology
34
, no. 
8
(
2018
):
988
991
, https://doi.org/10.1080/02670836.2017.1415016
17.
Yin
Y.
,
Li
S.
, and
Wang
P.
, “
All-Optical Tuning of Au Nanocluster Functionalized Microfibre Coil Resonator
,”
Journal of Physics: Conference Series
1892
, no. 
1
(
2021
): 012026, https://doi.org/10.1088/1742-6596/1892/1/012026
18.
Huang
X.
,
Miao
J.
, and
Luo
A. A.
, “
Lightweight AlCrTiV High-Entropy Alloys with Dual-Phase Microstructure via Microalloying
,”
Journal of Materials Science
54
, no. 
3
(February
2019
):
2271
2277
, https://doi.org/10.1007/s10853-018-2970-4
19.
Nam
S.
,
Kim
M. J.
,
Hwang
J. Y.
, and
Choi
H.
, “
Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) High-Entropy Alloys by Grain Refinement and Using Nanoscale Carbides via Powder Metallurgical Route
,”
Journal of Alloys and Compounds
762
(September
2018
):
29
37
, https://doi.org/10.1016/j.jallcom.2018.05.180
20.
Samaei
A. T.
,
Mirsayar
M. M.
, and
Aliha
M. R. M.
, “
The Microstructure and Mechanical Behavior of Modern High Temperature Alloys
,”
Engineering Solid Mechanics
3
, no. 
1
(
2015
):
1
20
, https://doi.org/10.5267/j.esm.2015.1.001
21.
Youssef
K. M.
,
Zaddach
A. J.
,
Niu
C.
,
Irving
D. L.
, and
Koch
C. C.
, “
A Novel Low-Density, High-Hardness, High-Entropy Alloy with Close-Packed Single-Phase Nanocrystalline Structures
,”
Materials Research Letters
3
, no. 
2
(
2015
):
95
99
, https://doi.org/10.1080/21663831.2014.985855
22.
Anand Sekhar
R.
,
Samal
S.
,
Nayan
N.
, and
Bakshi
S. R.
, “
Microstructure and Mechanical Properties of Ti-Al-Ni-Co-Fe Based High Entropy Alloys Prepared by Powder Metallurgy Route
,”
Journal of Alloys and Compounds
787
(May
2019
):
123
132
, https://doi.org/10.1016/j.jallcom.2019.02.083
23.
Chung
S. H.
and
Ryu
H. J.
, “
Cryomilling Process of Oxide Dispersion Strengthened CoCrFeMnNi High-Entropy Alloy
,” in
Transactions of the Korean Nuclear Society Spring Meeting
(
Daejeon, South Korea
:
Korean Nuclear Society
,
2018
),
62
75
.
24.
Salemi
F.
,
Abbasi
M. H.
, and
Karimzadeh
F.
, “
Synthesis and Thermodynamic Analysis of Nanostructured CuNiCoZnAl High Entropy Alloy Produced by Mechanical Alloying
,”
Journal of Alloys and Compounds
685
(November
2016
):
278
286
, https://doi.org/10.1016/j.jallcom.2016.05.274
25.
Kang
B.
,
Kong
T.
,
Ryu
H. J.
, and
Hong
S. H.
, “
Superior Mechanical Properties and Strengthening Mechanisms of Lightweight AlxCrNbVMo Refractory High-Entropy Alloys (x = 0, 0.5, 1.0) Fabricated by the Powder Metallurgy Process
,”
Journal of Materials Science & Technology
69
(April
2021
):
32
41
, https://doi.org/10.1016/j.jmst.2020.07.012
26.
Shao
L.
,
Zhang
T.
,
Li
L.
,
Zhao
Y.
,
Huang
J.
,
Liaw
P. K.
, and
Zhang
Y.
, “
A Low-Cost Lightweight Entropic Alloy with High Strength
,”
Journal of Materials Engineering and Performance
27
, no. 
12
(December
2018
):
6648
6656
, https://doi.org/10.1007/s11665-018-3720-0
27.
Tseng
K.
,
Yang
Y.
,
Juan
C.
,
Chin
T.
,
Tsai
C.
, and
Yeh
J.
, “
A Light-Weight High-Entropy Alloy Al20Be20Fe10Si15Ti35
,”
Science China Technological Sciences
61
, no. 
2
(February
2018
):
184
188
, https://doi.org/10.1007/s11431-017-9073-0
28.
Dada
M.
,
Popoola
P.
,
Mathe
N.
,
Adeosun
S.
, and
Pityana
S.
, “
Investigating the Elastic Modulus and Hardness Properties of a High Entropy Alloy Coating Using Nanoindentation
,”
International Journal of Lightweight Materials and Manufacture
4
, no. 
3
(September
2021
):
339
345
, https://doi.org/10.1016/j.ijlmm.2021.04.002
29.
Tang
Z.
,
Gao
M. C.
,
Diao
H.
,
Yang
T.
,
Liu
J.
,
Zuo
T.
,
Zhang
Y.
, et al., “
Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems
,”
JOM
65
, no. 
12
(December
2013
):
1848
1858
, https://doi.org/10.1007/s11837-013-0776-z
30.
Tian
Q.
,
Zhang
G.
,
Yin
K.
,
Wang
L.
,
Wang
W.
,
Cheng
W.
,
Wang
Y.
, and
Huang
J. C.
, “
High Temperature Deformation Mechanism and Microstructural Evolution of Relatively Lightweight AlCoCrFeNi High Entropy Alloy
,”
Intermetallics
119
(April
2020
): 106707, https://doi.org/10.1016/j.intermet.2020.106707
31.
Guddla
G. T.
,
Ambadipudi
S.
,
Katta
V. K.
,
Katari
N. K.
, and
Ravuri
B. R.
, “
Influence of Titanium Content on Thermal, Mechanical and Corrosion Behaviour Anomalies of Nickel-Molybdenum-Silicate Bulk Metallic Glasses
,”
Silicon
14
, no. 
4
(February
2022
):
1571
1581
, https://doi.org/10.1007/s12633-020-00841-3
32.
Lin
C.-M.
and
Tsai
H.-L.
, “
Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy
,”
Intermetallics
19
, no. 
3
(March
2011
):
288
294
, https://doi.org/10.1016/j.intermet.2010.10.008
33.
Han
L.-X.
,
Wang
C.-M.
, and
Sun
H.-F.
, “
Microstructure and Anticorrosion Property of High-Entropy Alloy AlFeNiCrCoTi0.5Vx
,”
Materials Transactions
57
, no. 
7
(
2016
):
1134
1137
, https://doi.org/10.2320/matertrans.M2015443
34.
Kwiatkowski
L.
,
Wielage
B.
,
Wank
A.
, and
Pokhmurska
H.
, “
Corrosion Behaviour of High Energy Beam Remelted Layers of Light-Weight Alloys
,” in
Laser Technologies in Welding and Materials Processing: Proceedings of the International Conference
(
Kiev, Ukraine
:
International Association Welding
,
2003
),
81
84
.
35.
Qiu
Y.
,
Thomas
S.
,
Gibson
M. A.
,
Fraser
H. L.
, and
Birbilis
N.
, “
Corrosion of High Entropy Alloys
,”
npj Materials Degradation
1
, no. 
1
(
2017
): 15.
36.
Cai
A. H.
,
Xiong
X.
,
Liu
Y.
,
An
W. K.
,
Zhou
G. J.
,
Luo
Y.
, and
Li
T. L.
, “
Corrosion Behavior of Cu55Zr35Ti10 Metallic Glass in the Chloride Media
,”
Materials Chemistry and Physics
134
, nos. 
2–3
(June
2012
):
938
944
, https://doi.org/10.1016/j.matchemphys.2012.03.094
This content is only available via PDF.
You do not currently have access to this content.