In structures containing brittle materials, residual and/or heterogenous stresses may prevent cracks to propagate up to failure. Consequently, for such structures, crack arrest has to be accounted for and a weakest link hypothesis may not be applicable. A probabilistic crack propagation model is derived to describe instantaneous or delayed arrest phenomena. A time-dependent regime is induced by slow crack growth experienced by ceramics and glasses. A general expression is obtained in which instantaneous up to infinite propagation times can be modeled in a unified way. The results are illustrated on a case study dealing with propagation of cracks in a thin walled tube submitted to a temperature gradient through its thickness. Different types of propagation/arrest regimes can be identified.

1.
Freudenthal, A. M., 1968, “Statistical Approach to Brittle Fracture,” Fracture, H. Liebowitz, ed., 2, Academic Press, New York, pp. 591–619.
2.
Weibull
,
W.
, 1939, “A Statistical Theory of the Strength of Materials,” Roy. Swed. Inst. Eng. Res., 151.
3.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.
4.
Jayatilaka
,
A.
de
S.
, and
Trustrum
,
K.
,
1977
, “
Statistical Approach to Brittle Fracture
,”
J. Mater. Sci.
,
12
, pp.
1426
1430
.
5.
Munz, D., and Fett, T., 1999, “Scatter of Mechanical Properties,” in Ceramics, Springer, Berlin, Germany, pp. 137–158.
6.
Batdorf
,
S. B.
, and
Heinisch
, Jr.,
H. L.
,
1978
, “
Weakest Link Theory Reformulated for Arbitrary Fracture Criterion
,”
J. Am. Ceram. Soc.
,
61
(
7–8
), pp.
355
358
.
7.
Evans
,
A. G.
,
1978
, “
A General Approach for the Statistical Analysis of Multiaxial Fracture
,”
J. Am. Ceram. Soc.
,
61
(
7–8
), pp.
302
308
.
8.
Davies
,
D. G. S.
,
1973
, “
The Statistical Approach to Engineering Design in Ceramics
,”
Proc. Br. Ceram. Soc.
,
22
, pp.
429
452
.
9.
Aveston, J., Cooper, G. A., and Kelly, A., 1971, “Single and Multiple Fracture,” Proc. National Physical Laboratory: Properties of Fiber Composites, IPC Science and Technology Press, Surrey, UK, pp. 15–26.
10.
Riou
,
P.
,
Denoual
,
C.
, and
Cottenot
,
C. E.
,
1998
, “
Visualization of the Damage Evolution in Impacted Silicon Carbide Ceramics
,”
Int. J. Impact Eng.
,
21
(
4
), pp.
225
235
.
11.
Denoual
,
C.
, and
Hild
,
F.
,
2000
, “
A Damage Model for the Dynamic Fragmentation of Brittle Solids
,”
Comp. Meth. Appl. Mech. Eng.
,
183
, pp.
247
258
. Perspective,” Continuum Damage Mechanics of Materials and Structures, O. Allix, and F. Hild, eds., Elsevier, Amsterdam, the Netherlands, in press.
12.
Wiederhorn
,
S. M.
,
1967
, “
Influence of Water Vapor on Crack Propagation in Soda-Lime-Silicate Glass
,”
J. Am. Ceram. Soc.
,
50
(
8
), pp.
407
417
.
13.
Wiederhorn
,
S. M.
, and
Bolz
,
L. H.
,
1970
, “
Stress Corrosion and Static Fatigue of Glass
,”
J. Am. Ceram. Soc.
,
56
(
4
), pp.
192
197
.
14.
Evans
,
A. G.
,
1972
, “
A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials and Its Application to Polycrystalline Alumina
,”
J. Mater. Sci.
,
7
, pp.
1137
1146
.
15.
Evans
,
A. G.
, and
Wiederhorn
,
S. M.
,
1974
, “
Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperature
,”
J. Mater. Sci.
,
9
, pp.
270
278
.
16.
Charles
,
Y.
, and
Hild
,
F.
,
2002
, “
Crack Arrest in Ceramic/Steel Assemblies
,”
Int. J. Fract.
,
15
(
3
), pp.
251
272
.
17.
Davidge
,
R. W.
,
McLaren
,
J. R.
, and
Tappin
,
G.
,
1973
, “
Strength-Probability-Time (SPT) Relationship in Ceramics
,”
J. Mater. Sci.
,
8
, pp.
1699
1705
.
18.
Evans
,
A. G.
, and
Wiederhorn
,
S. M.
,
1974
, “
Proof Testing of Ceramic Materials-An Analytical Basis for Failure Prediction
,”
Int. J. Fract.
,
10
, pp.
379
392
.
19.
Evans
,
A. G.
,
1980
, “
Fatigue in Ceramics
,”
Int. J. Fract.
,
16
(
5
), pp.
485
498
.
20.
Brinkman, C. R., and Duffy, S. F., eds., 1994, “Life Prediction Methodologies and Data for Ceramic Materials,” ASTM STP 1211.
21.
Bower
,
A. F.
, and
Ortiz
,
M.
,
1991
, “
A Three-Dimensional Analysis of Crack Trapping and Bridging by Tough Particles
,”
J. Mech. Phys. Solids
,
28
(
5
), pp.
815
858
.
22.
Bower
,
A. F.
, and
Ortiz
,
M.
,
1993
, “
The Influence of Grain Size on the Toughness of Monolithic Ceramics
,”
ASME J. Eng. Mat. Technol.
,
115
, pp.
228
236
.
23.
Curtin
,
W. A.
,
1997
, “
Toughening in Disordered Brittle Materials
,”
Phys. Rev. B
,
55
, pp.
11270
11276
.
24.
Curtin
,
W. A.
,
1998
, “
Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites
,”
Adv. Appl. Mech.
,
36
, pp.
164
164
.
25.
Schmittbuhl
,
J.
,
Roux
,
S.
,
Vilotte
,
J.-P.
, and
Måløy
,
K. J.
,
1995
, “
Pinning of Interfacial Crack: Effect of Non-local Interactions
,”
Phys. Rev. Lett.
,
74
, pp.
1787
1790
.
26.
Ramanathan
,
S.
, and
Fisher
,
D. S.
,
1998
, “
Onset of Propagation of Planar Cracks in Heterogeneous Media
,”
Phys. Rev. B
,
58
, pp.
6026
6046
.
27.
Skoe, R., Vandembroucq, D., and Roux, S., 2003, “Front Propagation in Random Media: From Extremal to Activated Dynamics,” Int. J. Modern Physics C, in press.
28.
Chudnowsky
,
A.
, and
Kunin
,
B.
,
1987
, “
A Probabilistic Model of Brittle Crack Formation
,”
J. Appl. Phys.
,
62
, p.
4124
4124
.
29.
Beyerlein
,
I. J.
, and
Phoenix
,
S. L.
,
1997
, “
Statistics of Fracture for an Elastic Notched Composite Lamina Containing Weibull Fibers—Part I. Features From Monte-Carlo Simulation
,”
Eng. Fract. Mech.
,
57
, pp.
241
265
.
30.
Beyerlein
,
I. J.
, and
Phoenix
,
S. L.
,
1997
, “
Statistics of Fracture for an Elastic Notched Composite Lamina Containing Weibull Fibers—Part II. Probability Models of Crack Growth
,”
Eng. Fract. Mech.
,
57
, pp.
267
299
.
31.
Landis
,
C. M.
,
Beyerlein
,
I. J.
, and
McMeeking
,
R. M.
,
2000
, “
Micromechanical Simulation of the Failure of Fiber Reinforced Composites
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
621
648
.
32.
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., 1976, Introduction to Ceramics, John Wiley and Sons, Inc., New York.
33.
Le´vy
,
P.
,
1924
, “
The´orie des erreurs. La loi de Gauss et les lois exceptionnelles
,”
Bull. Mater. Sci.
,
52
, pp.
49
85
.
34.
Le´vy, P., 1954, The´orie de l’addition des variables ale´atoires, Gauthier-Villars, Paris, France.
35.
Griffith
,
A. A.
,
1921
, “
The Phenomenon of Rupture and Flow in Solids
,”
Proc. R. Soc. London, Ser. A
,
221
, pp.
163
197
.
36.
Jeulin
,
D.
,
1994
, “
Fracture Statistics Models and Crack Propagation in Random Media
,”
Appl. Mech. Rev.
,
47
(
1
), pp.
141
150
.
37.
Wiederhorn, S. M., 1974, “Subcritical Crack Growth in Ceramics,” Fracture Mechanics of Ceramics, R. C. Brandt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Press, New York, pp. 613–646.
38.
Hillig, W. B., and Charles, R. J., 1965, High Strength Materials, V. F. Zackey, ed., John Wiley and Sons, Inc., New York, pp. 682–705.
39.
Wan
,
K.-T.
,
Lathabai
,
S.
, and
Lawn
,
B. R.
,
1990
, “
Crack Velocity Functions and Thresholds in Brittle Materials
,”
J. Eur. Ceram. Soc.
,
6
, pp.
259
268
.
40.
Lindeberg
,
J. W.
,
1922
, “
Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung
,”
Math. Z.
,
15
, pp.
211
225
.
41.
Feller, W., 1966, An Introduction to Probability Theory and its Applications, John Wiley and Sons, Inc., New York.
42.
Fett, T., and Munz, D., 1994, “Lifetime Predictions of Ceramic Materials Under Constant and Cyclic Load,” Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman, and S. F. Duffy, eds., ASTM STP 1211, pp. 161–174.
43.
Bree
,
I.
,
1967
, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes with Applications to Fast-Nuclear-Reactor Fuel Elements
,”
J. Strain Anal.
,
2
, pp.
226
238
.
44.
Megahed
,
M. M.
,
Morrison
,
C. J.
, and
Ponter
,
A. R. S.
,
1982
, “
A Theoretical and Experimental Investigation of Material Rachetting Rates in a Bree Beam Element
,”
Int. J. Mech. Sci.
,
25
, pp.
917
933
.
45.
Hild
,
F.
, and
Roux
,
S.
,
1991
, “
Fatigue Initiation in Heterogeneous Brittle Materials
,”
Mech. Res. Comm.
,
18
, pp.
409
414
.
46.
Oh
,
H. L.
, and
Finnie
,
I.
,
1970
, “
On the Location of Fracture in Brittle Solids-I Due to Static Loading
,”
Int. J. Fract. Mech.
,
6
, pp.
287
300
.
47.
Hild
,
F.
,
1994
, “
On the Average Pull-Out Length of Fiber-Reinforced Composites
,”
C. R. Acad. Sci. Paris
,
319
(Se´rie II), pp.
1123
1128
.
48.
Tada, H., Paris, P. C., and Irwin, G. R., 1985, The Stress Analysis of Cracks Handbook, ASME, New York.
49.
Hutchinson, J. W., and Suo, Z., 1992, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Wu, eds., Academic Press, Inc., New York, USA, pp. 63–191.
50.
Suo
,
Z.
,
1990
, “
Failure of Brittle Adhesive Joints
,”
Appl. Mech. Rev.
,
43
, pp.
S276–S279
S276–S279
.
51.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. P.
,
1961
, “
A Critical Analysis of Crack Propagation Laws
,”
The Trend in Engineering
,
13
, pp.
9
14
.
52.
Elber
,
W.
,
1970
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
,
2
, pp.
37
45
.
53.
Elber, W., 1971, “The Significance of Fatigue Crack Closure,” Damage Tolerance in Aircraft Structures, ASTM STP 486, pp. 230–242.
54.
Pellas, J., Baudin, G., and Robert, M., 1977, “Mesure et calcul du seuil de fissuration apre`s surcharge,” Recherche Ae´rospatiale, 3, pp. 191–201.
You do not currently have access to this content.