In this study, a qualitative equivalence between the electrical percolation threshold and the effective thermal conductivity of composites filled with cylindrical nanofillers has been recognized. The two properties are qualitatively compared on a wide range of aspect ratios, from thin nanoplatelets to long nanotubes. Statistical continuum theory of strong-contrast is utilized to estimate the thermal conductivity of this type of heterogeneous medium, while the percolation threshold is simultaneously evaluated using the Monte Carlo simulations. Statistical two-point probability distribution functions are used as microstructure descriptors for implementing the statistical continuum approach. Monte Carlo simulations are carried out for calculating the two-point correlation functions of computer generated microstructures. Finally, the similarities between the effective conductivity properties and percolation threshold are discussed.

References

1.
Zhang
,
C. S.
,
Ni
Q. Q.
,
Fu
,
S. Y.
, and
Kurashiki
,
K.
, 2007, “
Electromagnetic Interference Shielding Effect of Nanocomposites With Carbon Nanotube and Shape Memory Polymer
,”
Compos. Sci. Technol.
,
67
(
14
), pp.
2973
2980
.
2.
Steinert
,
B. W.
, and
Dean
,
D. R.
, 2009, “
Magnetic Field Alignment and Electrical Properties of Solution Cast PET-Carbon Nanotube Composite Films
,”
Polymer
,
50
(
3
), pp.
898
904
.
3.
Russell
,
T.
,
Walder
,
J.
, and
Rich
,
A.
, 2005, “
The Use of Carbon Nanotubes to Improve Conductive Elastomers
,”
Sealing Technol.
,
2005
(
11
), pp.
12
14
.
4.
Presting
,
H.
, and
König
U.
, 2003, “
Future Nanotechnology Developments for Automotive Applications
,”
Mater. Sci. Eng., C
,
23
(
6-8
), pp.
737
741
.
5.
Daniel
,
D. C.
,
Wilkerson
,
J. W.
, and
Jiang
,
Z.
, 2009, “
Carbon Nanotube Fiber-Reinforced Polymer Composites Show Increased Strength and Durability in Aerospace Applications
,” US Patent Application No. 20100098931.
6.
Rozenberg
,
B. A.
, and
Tenne
,
R.
, 2008, “
Polymer-assisted Fabrication of Nanoparticles and Nanocomposites
,”
Prog. Polym. Sci.
,
33
(
1
), pp.
40
112
.
7.
Zhou
,
Y.
,
Pervin
,
F.
,
Lewis
,
L.
, and
Jeelani
,
S.
, 2007, “
Experimental Study on the Thermal and Mechanical Properties of Multi-Walled Carbon Nanotube-Reinforced Epoxy
,”
Mater. Sci. Eng., A
,
452-453
, pp.
657
664
.
8.
Zeng
,
Q. H.
,
Yu
,
A. B.
, and
Lu
,
G. Q.
, 2008, “
Multiscale Modeling and Simulation of Polymer Nanocomposites
,”
Prog. Polym. Sci.
,
33
(
2
), pp.
191
269
.
9.
Torquato
,
S.
, 2002, “
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,”
Appl. Mech. Rev.
,
55
(
4
), pp.
B62
B63
.
10.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
The Netherlands
.
11.
Dumont
,
J. P.
,
Ladeveze
,
P.
,
Poss
,
M.
, and
Remond
,
Y.
, 1987, “
Damage Mechanics for 3-D Composites
,”
Compos. Struct.
,
8
(
2
), pp.
119
141
.
12.
Hori
,
M.
, and
Munasighe
,
S.
, 1999, “
Generalized Hashin-Shtrikman Variational Principle for boundary-Value Problem of Linear and Non-Linear Heterogeneous Body
,”
Mech. Mater.
,
31
(
7
), pp.
471
486
.
13.
Affdl
,
J. C. H.
, and
Kardos
,
J. L.
, 1976, “
The Halpin-Tsai Equations: A Review
,”
Polym. Eng. Sci.
,
16
(
5
), pp.
344
352
.
14.
Brown
,
J. W. F.
, 1955, “
Solid Mixture Permittivities
,”
J. Chem. Phys.
,
23
(
8
), pp.
1514
1517
.
15.
Pham
,
D. C.
, and
Torquato
,
S.
, 2003, “
Strong-Contrast Expansions and Approximations for the Effective Conductivity of Isotropic Multiphase Composites
,”
J. Appl. Phys.
,
94
(
10
), pp.
6591
6602
.
16.
Li
,
J.
, and
Kim
,
J.-K.
, 2007, “
Percolation Threshold of conducting Polymer Composites Containing 3D Randomly Distributed Graphite Nanoplatelets
,”
Compos. Sci. Technol.
,
67
(
10
), pp.
2114
2120
.
17.
Yi
,
Y. B.
, and
Sastry
,
A. M.
, 2004, “
Analytical Approximation of the Percolation Threshold for Overlapping Ellipsoids of Revolution
,”
Proc. R. Soc. London, Ser. A
460
(
2048
), pp.
2353
2380
.
18.
Garboczi
,
E. J.
,
Snyder
,
K. A.
,
Douglas
,
J. F.
, and
Thorpe
,
M. F.
, 1995, “
Geometrical Percolation Threshold of Overlapping Ellipsoids
,”
Phys. Rev. E
,
52
(
1
), pp.
819
828
.
19.
Asiaei
,
S.
,
Akbar
,
A. K.
,
Baniasadi
,
M.
, and
Safdari
,
M.
, 2010, “
Effects of Carbon Nanotubes Geometrical Distribution on Electrical Percolation of Nanocomposites: A Comprehensive Approach
,”
J. Reinf. Plast. Compos.
,
29
(
6
), pp.
818
829
.
20.
Weisstein
,
Eric W.
, “
Sphere Point Picking
,” MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/SpherePointPicking.htmlhttp://mathworld.wolfram.com/SpherePointPicking.html.
21.
Balberg
,
I.
,
Binenbaum
,
N.
, and
Wagner
,
N.
, 1984, “
Percolation Thresholds in the Three-Dimensional Sticks System
,”
Phys. Rev. Lett.
,
52
(
17
), pp.
1465
1468
.
22.
Stauffer
,
D.
, and
Aharony
,
A.
, 1994,
Introduction to Percolation Theory
,
Taylor & Francis
,
London
.
23.
Ghazavizadeh
,
A.
,
Baniassadi
,
M.
,
Safdari
,
M.
,
Atai
,
A. A.
,
Ahzi
,
S.
,
Patlazhan
,
S. A.
,
Gracio
,
J.
, and
Ruch
,
D.
, 2011, “
Evaluating the Effect of Mechanical Loading on the Electrical Percolation Threshold of Carbon Nanotube Reinforced Polymers: A 3D Monte-Carlo study
,”
J. Comput. Theor. Nanosci.
8
(
10
), pp.
2087
2099
.
24.
Li
,
D. S.
,
Baniassadi
,
M.
,
Garmestani
,
H.
,
Ahzi
,
S.
,
Reda Taha
,
M. M.
, and
Ruch
,
D.
, 2010, “
3D Reconstruction of Carbon Nanotube Composite Microstructure Using Correlation Functions
,”
J. Comput. Theor. Nanosci.
,
7
(
8
), pp.
1462
1468
.
25.
Baniassadi
,
M.
,
Addiego
,
F.
,
Laachachi
,
A.
,
Ahzi
,
S.
,
Garmestani
,
H.
,
Hassouna
,
F.
,
Makradi
,
A.
,
Toniazzo
,
V.
, and
Ruch
,
D.
, 2011, “
Using SAXS Approach to Estimate Thermal Conductivity of Polystyrene/Zirconia Nanocomposite by Exploiting Strong Contrast Technique
,”
Acta Mater.
,
59
(
7
), pp.
2742
2748
.
26.
Baniassadi
,
M.
,
Laachachi
,
A.
,
Makradi
,
A.
,
Belouettar
,
S.
,
Ruch
,
D.
,
Muller
,
R.
,
Garmestani
,
H.
,
Toniazzo
,
V.
, and
Ahzi
,
S.
, 2011, “
Statistical Continuum Theory for the Effective Conductivity of carbon Nanotubes Filled Polymer Composites
,”
Thermochim. Acta
,
520
(
1-2
), pp.
33
37
.
27.
Mikdam
,
A.
,
Makradi
,
A.
,
Ahzi
,
S.
,
Garmestani
,
H.
,
Li
,
D.S.
, and
Remond
,
Y.
, 2009, “
A New Approximation for the Three-Point Probability Function
,”
Int. J. Solids Struct.
,
46
(
21
), pp.
3782
3787
.
You do not currently have access to this content.