Abstract

Recent work has demonstrated the potential of convolutional neural networks (CNNs) in producing low-computational cost surrogate models for the localization of mechanical fields in two-phase microstructures. The extension of the same CNNs to polycrystalline microstructures is hindered by the lack of an efficient formalism for the representation of the crystal lattice orientation in the input channels of the CNNs. In this paper, we demonstrate the benefits of using generalized spherical harmonics (GSH) for addressing this challenge. A CNN model was successfully trained to predict the local plastic velocity gradient fields in polycrystalline microstructures subjected to a macroscopically imposed loading condition. Specifically, it is demonstrated that the proposed approach improves significantly the accuracy of the CNN models when compared with the direct use of Bunge–Euler angles to represent the crystal orientations in the input channels. Since the proposed approach implicitly satisfies the expected crystal symmetries in the specification of the input microstructure to the CNN, it opens new research directions for the adoption of CNNs in addressing a broad range of polycrystalline microstructure design and optimization problems.

References

1.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
2.
Bishop
,
J.
, and
Hill
,
R.
,
1951
, “
Xlvi. A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
42
(
327
), pp.
414
427
.
3.
Bishop
,
J.
, and
Hill
,
R.
,
1951
, “
Cxxviii. A Theoretical Derivation of the Plastic Properties of a Polycrystalline Face-Centred Metal
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
42
(
334
), pp.
1298
1307
.
4.
Kröner
,
E.
,
1961
, “
On the Plastic Deformation of Polycrystals
,”
Acta Metall.
,
9
(
2
), pp.
155
161
.
5.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H. -J.
,
Seepersad
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
,
Burlington, MA
.
6.
Choi
,
H.-J.
,
Mcdowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optim.
,
40
(
4
), pp.
287
307
.
7.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2008
, “Concurrent Design of Hierarchical Materials and Structures,”
Scientific Modeling and Simulations
,
S.
Yip
, and
T.
Diaz de la Rubia
, eds.,
Springer
,
Dordrecht
, pp.
207
240
.
8.
Adams
,
B. L.
,
Kalidindi
,
S.
, and
Fullwood
,
D. T.
,
2012
,
Microstructure Sensitive Design for Performance Optimization
,
Butterworth-Heinemann
,
Waltham, MA
.
9.
Mackenzie
,
A.
,
Hancock
,
J.
, and
Brown
,
D.
,
1977
, “
On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels
,”
Eng. Fract. Mech.
,
9
(
1
), pp.
167
188
.
10.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
11.
Kalidindi
,
S. R.
,
2015
,
Hierarchical Materials Informatics: Novel Analytics for Materials Data
,
Elsevier
,
Waltham, MA
.
12.
Adams
,
B. L.
, and
Olson
,
T.
,
1998
, “
The Mesostructure-Properties Linkage in Polycrystals
,”
Prog. Mater. Sci.
,
43
(
1
), pp.
1
87
.
13.
Luscher
,
D. J.
,
McDowell
,
D. L.
, and
Bronkhorst
,
C. A.
,
2010
, “
A Second Gradient Theoretical Framework for Hierarchical Multiscale Modeling of Materials
,”
Int. J. Plast.
,
26
(
8
), pp.
1248
1275
.
14.
Milton
,
G. W.
, and
Sawicki
,
A.
,
2003
, “
Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics
,”
ASME Appl. Mech. Rev.
,
56
(
2
), pp.
B27
B28
.
15.
Castaneda
,
P. P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I—Theory
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
737
757
.
16.
McDowell
,
D.
, and
Dunne
,
F.
,
2010
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1521
1542
, Emerging Frontiers in Fatigue.
17.
Fish
,
J.
,
Yu
,
Q.
, and
Shek
,
K.
,
1999
, “
Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization
,”
Int. J. Numer. Methods Eng.
,
45
(
11
), pp.
1657
1679
.
18.
Qu
,
J.
, and
Cherkaoui
,
M.
,
2006
,
Fundamentals of Micromechanics of Solids
,
Wiley
,
Hoboken, NJ
.
19.
Kröner
,
E.
,
1977
, “
Bounds for Effective Elastic Moduli of Disordered Materials
,”
J. Mech. Phys. Solids
,
25
(
2
), pp.
137
155
.
20.
Kröner
,
E.
,
1986
, “Statistical Modelling,”
Modelling Small Deformations of Polycrystals
,
J.
Gittus
, and
J.
Zarka
, eds.,
Springer
,
Heidelberg
, pp.
229
291
.
21.
Anand
,
L.
, and
Kothari
,
M.
,
1996
, “
A Computational Procedure for Rate-Independent Crystal Plasticity
,”
J. Mech. Phys. Solids
,
44
(
4
), pp.
525
558
.
22.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
,
1992
, “
Crystallographic Texture Evolution in Bulk Deformation Processing of fcc Metals
,”
J. Mech. Phys. Solids
,
40
(
3
), pp.
537
569
.
23.
Peirce
,
D.
,
Asaro
,
R.
, and
Needleman
,
A.
,
1982
, “
An Analysis of Nonuniform and Localized Deformation in Ductile Single Crystals
,”
Acta Metall.
,
30
(
6
), pp.
1087
1119
.
24.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
25.
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
,
2002
, “
A Multiscale Model of Plasticity
,”
Int. J. Plast.
,
18
(
9
), pp.
1133
1163
.
26.
Tan
,
J.
,
Villa
,
U.
,
Shamsaei
,
N.
,
Shao
,
S.
,
Zbib
,
H. M.
, and
Faghihi
,
D.
,
2021
, “
A Predictive Discrete-Continuum Multiscale Model of Plasticity With Quantified Uncertainty
,”
Int. J. Plast.
,
138
(Special Issue on Multi-scale Modeling and Characterization of Material Behavior in Normal and Harsh Environments in Honor of Professor George Z. Voyiadjis), p.
102935
.
27.
Chehade
,
A. A.
,
Belgasam
,
T. M.
,
Ayoub
,
G.
, and
Zbib
,
H. M.
,
2020
, “
Accelerating the Discovery of New dp Steel Using Machine Learning-Based Multiscale Materials Simulations
,”
Metall. Mater. Trans. A
,
51
(
6
), pp.
3268
3279
.
28.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
29.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
30.
Yabansu
,
Y. C.
, and
Kalidindi
,
S. R.
,
2015
, “
Representation and Calibration of Elastic Localization Kernels for a Broad Class of Cubic Polycrystals
,”
Acta Mater.
,
94
, pp.
26
35
.
31.
Yabansu
,
Y. C.
,
Patel
,
D. K.
, and
Kalidindi
,
S. R.
,
2014
, “
Calibrated Localization Relationships for Elastic Response of Polycrystalline Aggregates
,”
Acta Mater.
,
81
, pp.
151
160
.
32.
Paulson
,
N. H.
,
Priddy
,
M. W.
,
McDowell
,
D. L.
, and
Kalidindi
,
S. R.
,
2017
, “
Reduced-Order Structure-Property Linkages for Polycrystalline Microstructures Based on 2-Point Statistics
,”
Acta Mater.
,
129
, pp.
428
438
.
33.
de Oca Zapiain
,
D. M.
,
Popova
,
E.
, and
Kalidindi
,
S. R.
,
2017
, “
Prediction of Microscale Plastic Strain Rate Fields in Two-Phase Composites Subjected to an Arbitrary Macroscale Strain Rate Using the Materials Knowledge System Framework
,”
Acta Mater.
,
141
, pp.
230
240
.
34.
de Oca Zapiain
,
D. M.
, and
Kalidindi
,
S. R.
,
2019
, “
Localization Models for the Plastic Response of Polycrystalline Materials Using the Material Knowledge Systems Framework
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
7
), p.
074008
.
35.
Landi
,
G.
,
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2010
, “
Multi-Scale Modeling of Elastic Response of Three-Dimensional Voxel-Based Microstructure Datasets Using Novel DFT-Based Knowledge Systems
,”
Acta Mater.
,
58
(
7
), pp.
2716
2725
.
36.
Fast
,
T.
, and
Kalidindi
,
S. R.
,
2011
, “
Formulation and Calibration of Higher-Order Elastic Localization Relationships Using the MKS Approach
,”
Acta Mater.
,
59
(
11
), pp.
4595
4605
.
37.
Yang
,
Z.
,
Yabansu
,
Y. C.
,
Al-Bahrani
,
R.
,
Liao
,
W.-K.
,
Choudhary
,
A. N.
,
Kalidindi
,
S. R.
, and
Agrawal
,
A.
,
2018
, “
Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites From Simulation Datasets
,”
Comput. Mater. Sci.
,
151
, pp.
278
287
.
38.
Yang
,
Z.
,
Yabansu
,
Y. C.
,
Jha
,
D.
,
Choudhary
,
A. N.
,
Kalidindi
,
S. R.
, and
Agrawal
,
A.
,
2019
, “
Establishing Structure-Property Localization Linkages for Elastic Deformation of Three-Dimensional High Contrast Composites Using Deep Learning Approaches
,”
Acta Mater.
,
166
, pp.
335
345
.
39.
Yang
,
Z.
,
Al-Bahrani
,
R.
,
Reid
,
A. C.
,
Papanikolaou
,
S.
,
Kalidindi
,
S. R.
,
Liao
,
W. K.
,
Choudhary
,
A.
, and
Agrawal
,
A.
,
2019
, “
Deep Learning Based Domain Knowledge Integration for Small Datasets: Illustrative Applications in Materials Informatics
,”
Proceedings of the International Joint Conference on Neural Networks
,
Budapest, Hungary
,
July 14–19
, pp.
1
8
.
40.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
41.
Sachs
,
G.
,
1929
, “Zur ableitung einer fliessbedingung,”
Messages From the German Material Testing Institutes
,
O.
Bauer
,
M.
Hansen
,
F. V.
Göler
,
G.
Sachs
,
E.
Schmid
,
G.
Wassermann
,
K.
Sipp
,
H.
Sieglerschmidt
,
R.
Karnop
,
W.
Kuntze
,
K.
Lute
,
R.
Eisenschitz
,
B.
Rabinowitsch
,
K.
Weissenberg
,
W.
Boas
, and
M.
Masima
, eds.,
Springer
,
Berlin
, pp.
94
97
.
42.
Bunge
,
H.-J.
,
2013
,
Texture Analysis in Materials Science: Mathematical Methods
,
Elsevier
,
Waltham, MA
.
43.
Miyazawa
,
Y.
,
Briffod
,
F.
,
Shiraiwa
,
T.
, and
Enoki
,
M.
,
2019
, “
Prediction of Cyclic Stress–Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning
,”
Materials
,
12
(
22
), p.
3668
.
44.
Beniwal
,
A.
,
Dadhich
,
R.
, and
Alankar
,
A.
,
2019
, “
Deep Learning Based Predictive Modeling for Structure-Property Linkages
,”
Materialia
,
8
, pp.
100
435
.
45.
Ali
,
U.
,
Muhammad
,
W.
,
Brahme
,
A.
,
Skiba
,
O.
, and
Inal
,
K.
,
2019
, “
Application of Artificial Neural Networks in Micromechanics for Polycrystalline Metals
,”
Int. J. Plast.
,
120
, pp.
205
219
.
46.
Proust
,
G.
, and
Kalidindi
,
S. R.
,
2006
, “
Procedures for Construction of Anisotropic Elastic–Plastic Property Closures for Face-Centered Cubic Polycrystals Using First-Order Bounding Relations
,”
J. Mech. Phys. Solids
,
54
(
8
), pp.
1744
1762
.
47.
Gel’fand
,
I. M.
,
Minlos
,
R. A.
, and
Shapiro
,
Z. Y.
,
2018
,
Representations of the Rotation and Lorentz Groups and Their Applications
,
Courier Dover Publications
,
Garden City, NY
.
48.
Adams
,
B. L.
,
Wright
,
S. I.
, and
Kunze
,
K.
,
1993
, “
Orientation Imaging: The Emergence of a New Microscopy
,”
Metall. Trans. A
,
24
(
4
), pp.
819
831
.
49.
Wu
,
X.
,
Proust
,
G.
,
Knezevic
,
M.
, and
Kalidindi
,
S.
,
2007
, “
Elastic–Plastic Property Closures for Hexagonal Close-Packed Polycrystalline Metals Using First-Order Bounding Theories
,”
Acta Mater.
,
55
(
8
), pp.
2729
2737
.
50.
Fast
,
T.
,
Knezevic
,
M.
, and
Kalidindi
,
S. R.
,
2008
, “
Application of Microstructure Sensitive Design to Structural Components Produced From Hexagonal Polycrystalline Metals
,”
Comput. Mater. Sci.
,
43
(
2
), pp.
374
383
.
51.
Knezevic
,
M.
,
Kalidindi
,
S. R.
, and
Mishra
,
R. K.
,
2008
, “
Delineation of First-Order Closures for Plastic Properties Requiring Explicit Consideration of Strain Hardening and Crystallographic Texture Evolution
,”
Int. J. Plast.
,
24
(
2
), pp.
327
342
.
52.
Badrinarayanan
,
V.
,
Kendall
,
A.
, and
Cipolla
,
R.
,
2017
, “
Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
12
), pp.
2481
2495
.
53.
Du
,
C.
, and
Gao
,
S.
,
2017
, “
Image Segmentation-Based Multi-Focus Image Fusion Through Multi-Scale Convolutional Neural Network
,”
IEEE Access
,
5
, pp.
15750
15761
.
54.
Vardhana
,
M.
,
Arunkumar
,
N.
,
Lasrado
,
S.
,
Abdulhay
,
E.
, and
Ramirez-Gonzalez
,
G.
,
2018
, “
Convolutional Neural Network for Bio-Medical Image Segmentation With Hardware Acceleration
,”
Cognit. Syst. Res.
,
50
(Special Issue:Deep Learning approaches for Cognitive Systems), pp.
10
14
.
55.
Milletari
,
F.
,
Navab
,
N.
, and
Ahmadi
,
S.-A.
,
2016
, “
V-net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
,”
2016 Fourth International Conference on 3D Vision (3DV)
,
Stanford, CA
,
Oct. 25–28
, IEEE, pp.
565
571
.
56.
Davies
,
A.
,
Serjeant
,
S.
, and
Bromley
,
J. M.
,
2019
, “
Using Convolutional Neural Networks to Identify Gravitational Lenses in Astronomical Images
,”
Mon. Not. R. Astron. Soc.
,
487
(
4
), pp.
5263
5271
.
57.
Jha
,
D.
,
Singh
,
S.
,
Al-Bahrani
,
R.
,
Liao
,
W. K.
,
Choudhary
,
A.
,
De Graef
,
M.
, and
Agrawal
,
A.
,
2018
, “
Extracting Grain Orientations From EBSD Patterns of Polycrystalline Materials Using Convolutional Neural Networks
,”
Microsc. Microanal.
,
24
(
5
), pp.
497
502
.
58.
Cang
,
R.
,
Li
,
H.
,
Yao
,
H.
,
Jiao
,
Y.
, and
Ren
,
Y.
,
2018
, “
Improving Direct Physical Properties Prediction of Heterogeneous Materials From Imaging Data Via Convolutional Neural Network and a Morphology-Aware Generative Model
,”
Comput. Mater. Sci.
,
150
, pp.
212
221
.
59.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2018
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
60.
Dahl
,
G. E.
,
Sainath
,
T. N.
, and
Hinton
,
G. E.
,
2013
, “
Improving Deep Neural Networks for Lvcsr Using Rectified Linear Units and Dropout
,”
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
,
Vancouver, Canada
,
May 26–31
, IEEE, pp.
8609
8613
.
61.
Ciregan
,
D.
,
Meier
,
U.
, and
Schmidhuber
,
J.
,
2012
, “
Multi-Column Deep Neural Networks for Image Classification
,”
2012 IEEE Conference on Computer Vision and Pattern Recognition
,
Providence, RI
,
June 16–21
, IEEE, pp.
3642
3649
.
62.
Feng Ning
,
D.
,
Piano
,
F.
,
Bottou
,
L.
, and
Barbano
,
P. E.
,
2005
, “
Toward Automatic Phenotyping of Developing Embryos From Videos
,”
IEEE Trans. Image Process.
,
14
(
9
), pp.
1360
1371
.
63.
Hadsell
,
R.
,
Sermanet
,
P.
,
Ben
,
J.
,
Erkan
,
A.
,
Scoffier
,
M.
,
Kavukcuoglu
,
K.
,
Muller
,
U.
, and
LeCun
,
Y.
,
2009
, “
Learning Long-Range Vision for Autonomous Off-Road Driving
,”
J. Field Rob.
,
26
(
2
), pp.
120
144
.
64.
Collobert
,
R.
,
Weston
,
J.
,
Bottou
,
L.
,
Karlen
,
M.
,
Kavukcuoglu
,
K.
, and
Kuksa
,
P.
,
2011
, “
Natural Language Processing (Almost) From Scratch
,”
J. Mach. Learn. Res.
,
12
, pp.
2493
2537
.
65.
Bottou
,
L.
,
2010
, “Large-Scale Machine Learning With Stochastic Gradient Descent,”
Proceedings of COMPSTAT’2010
,
Y.
Lechevallier
, and
G.
Saporta
, eds.,
Springer
,
Berlin
, pp.
177
186
.
66.
Groeber
,
M. A.
, and
Jackson
,
M. A.
,
2014
, “
Dream. 3D: A Digital Representation Environment for the Analysis of Microstructure in 3D
,”
Int. Mater. Manuf. Innov.
,
3
(
1
), p.
5
.
67.
Smith
,
M.
,
2009
,
ABAQUS/Standard User’s Manual, Version 6.9.
,
Dassault Systèmes Simulia Corp
,
Providence, RI
.
68.
Kalidindi
,
S. R.
,
Bhattacharyya
,
A.
, and
Doherty
,
R. D.
,
2004
, “
Detailed Analyses of Grain–Scale Plastic Deformation in Columnar Polycrystalline Aluminium Using Orientation Image Mapping and Crystal Plasticity Models
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
460
(
2047
), pp.
1935
1956
.
69.
Khan
,
A.
,
Sohail
,
A.
,
Zahoora
,
U.
, and
Qureshi
,
A. S.
,
2020
, “
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
,”
Artif. Intell. Rev.
,
53
(
8
), pp.
5455
5516
.
70.
Hecht-Nielsen
,
R.
,
1989
, “
Theory of the Backpropagation Neural Network
,”
International 1989 Joint Conference on Neural Networks
,
Washington, DC
,
June 18–22
, Vol.
1
, pp.
593
605
.
71.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd, International Conference on Learning Representations, Conference Track Proceedings
,
Y.
Bengio
and
Y.
LeCun
, eds.,
San Diego, CA
,
May 7–9
.
You do not currently have access to this content.