Abstract

Friction stir welding of a low carbon thin steel plate was performed with preheating the base material to increase the joining performance. The rotational speed of the tool was set from 1500 to 2000 rpm with a constant travel speed of 15 mm/min and preheating temperature of 50 to 150 °C. The tensile strength of 340 MPa was achieved for the preheated specimen compared with 310 MPa for the non-preheating specimen at the welding speed of 15 mm/min. Electron microscopic images of the preheated joint revealed a remarkable plasticized material flow and dynamic recrystallization, which resulted in the grain refinement that had increased the joining strength. The weld thinning issue was almost eliminated in the preheated welded specimen. However, by increasing the preheat temperature further, the tensile strength decreases due to the formation of defects from excessive heat. The preheated sample fractured at the base metal, revealing a ductile fracture mode.

References

1.
Mohan
,
D. G.
, and
Wu
,
C. S.
,
2021
, “
A Review on Friction Stir Welding of Steels
,”
Chin J. Mech. Eng.
,
34
(
137
).
2.
Muhamad
,
M. R.
,
Raja
,
S.
,
Jamaludin
,
M. F.
,
Yusof
,
F.
,
Morisada
,
Y.
,
Suga
,
T.
, and
Fujii
,
H.
,
2021
, “
Enhancements on Dissimilar Friction Stir Welding Between AZ31 and SPHC Mild Steel With Al-Mg as Powder Additives
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071005
.
3.
Isa
,
M. S. M.
,
Moghadasi
,
K.
,
Ariffin
,
M. A.
,
Raja
,
S.
,
bin Muhamad
,
M. R.
,
Yusof
,
F.
,
Jamaludin
,
M. F.
,
bin Yusoff
,
N.
, and
bin Ab Karim
,
M. S.
,
2021
, “
Recent Research Progress in Friction Stir Welding of Aluminium and Copper Dissimilar Joint: A Review
,”
J. Mater. Res. Technol.
,
15
, pp.
2735
2780
.
4.
Tiwari
,
A.
,
Pankaj
,
P.
,
Biswas
,
P.
,
Kore
,
S. D.
, and
Rao
,
A. G.
,
2019
, “
Tool Performance Evaluation of Friction Stir Welded Shipbuilding Grade DH36 Steel Butt Joints
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5
), pp.
1989
2005
.
5.
Küçükömeroğlu
,
T.
,
Aktarer
,
S. M.
,
İpekoğlu
,
G.
, and
Çam
,
G.
,
2018
, “
Mechanical Properties of Friction Stir Welded St 37 and St 44 Steel Joints
,”
Mater. Test.
,
60
(
12
), pp.
1163
1170
.
6.
Yusof
,
F.
,
bin Muhamad
,
M. R.
,
Moshwan
,
R.
,
bin Jamaludin
,
M. F.
, and
Miyashita
,
Y.
,
2016
, “
Effect of Surface States on Joining Mechanisms and Mechanical Properties of Aluminum Alloy (A5052) and Polyethylene Terephthalate (PET) by Dissimilar Friction Spot Welding
,”
Metals
,
6
(
5
), p.
101
.
7.
Moghadasi
,
K.
,
Mohd Isa
,
M. S.
,
Ariffin
,
M. A.
,
Mohd jamil
,
M. Z.
,
Raja
,
S.
,
Wu
,
B.
,
Yamani
,
M.
, et al
,
2022
, “
A Review on Biomedical Implant Materials and the Effect of Friction Stir Based Techniques on Their Mechanical and Tribological Properties
,”
J. Mater. Res. Technol.
,
17
, pp.
1054
1121
.
8.
Raja
,
S.
,
Muhamad
,
M. R.
,
Yusof
,
F.
,
Jamaludin
,
M. F.
,
Suga
,
T.
,
Liu
,
H.
,
Morisada
,
Y.
, and
Fujii
,
H.
,
2022
, “
Friction Stir Alloying of AZ61 and Mild Steel With Al- CNT Additive
,”
Sci. Technol. Weld. Joining
,
27
(
7
), pp.
533
540
.
9.
Raja
,
S.
,
Muhamad
,
M. R.
,
Jamaludin
,
M. F.
, and
Yusof
,
F.
,
2020
, “
A Review on Nanomaterials Reinforcement in Friction Stir Welding
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
16459
16487
.
10.
Muhamad
,
M. R.
,
Jamaludin
,
M. F.
,
Yusof
,
F.
,
Mahmoodian
,
R.
,
Morisada
,
Y.
,
Suga
,
T.
, and
Fujii
,
H.
,
2020
, “
Effects of Al-Ni Powder Addition on Dissimilar Friction Stir Welding Between AA7075-T6 and 304 L
,”
Materialwiss. Werkstofftech.
,
51
(
9
), pp.
1274
1284
.
11.
Pankaj
,
P.
,
Tiwari
,
A.
,
Biswas
,
P.
,
Rao
,
A. G.
, and
Pal
,
S.
,
2020
, “
Experimental Studies on Controlling of Process Parameters in Dissimilar Friction Stir Welding of DH36 Shipbuilding Steel–AISI 1008 Steel
,”
Weld. World
,
64
(
6
), pp.
963
986
.
12.
Karami
,
V.
,
Dariani
,
B. M.
, and
Hashemi
,
R.
,
2021
, “
Investigation of Forming Limit Curves and Mechanical Properties of 316 Stainless Steel/St37 Steel Tailor-Welded Blanks Produced by Tungsten Inert Gas and Friction Stir Welding Method
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
437
446
.
13.
Logan
,
B. P.
,
Toumpis
,
A. I.
,
Galloway
,
A. M.
,
McPherson
,
N. A.
, and
Hambling
,
S. J.
,
2016
, “
Dissimilar Friction Stir Welding of Duplex Stainless Steel to Low Alloy Structural Steel
,”
Sci. Technol. Weld. Join.
,
21
(
1
), pp.
11
19
.
14.
Cheng
,
C.-P.
,
Lin
,
H.-M.
, and
Lin
,
J.-C.
,
2010
, “
Friction Stir Welding of Ductile Iron and Low Carbon Steel
,”
Sci. Technol. Weld. Join.
,
15
(
8
), pp.
706
711
.
15.
Tang
,
W.
,
Yang
,
X.
,
Li
,
S.
, and
Li
,
H.
,
2019
, “
Microstructure and Properties of CLAM/316L Steel Friction Stir Welded Joints
,”
J. Mater. Process. Technol.
,
271
, pp.
189
201
.
16.
Tiwari
,
A.
,
Singh
,
P.
,
Pankaj
,
P.
,
Biswas
,
P.
,
Kore
,
S. D.
, and
Pal
,
S.
,
2019
, “
Effect of Tool Offset and Rotational Speed in Dissimilar Friction Stir Welding of AISI 304 Stainless Steel and Mild Steel
,”
J. Mater. Eng. Perform.
,
28
(
10
), pp.
6365
6379
.
17.
Rezaei Shahreza
,
A.
, and
Amini
,
S.
,
2017
, “
Experimental Comparison of the Effects of Superimposed Axial and Bending Ultrasonic Vibrations on Friction Stir Welding Process
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
2
), pp.
539
552
.
18.
Padhy
,
G. K.
,
Wu
,
C. S.
, and
Gao
,
S.
,
2015
, “
Auxiliary Energy Assisted Friction Stir Welding—Status Review
,”
Sci. Technol. Weld. Join.
,
20
(
8
), pp.
631
649
.
19.
Álvarez
,
A. I.
,
García
,
M.
,
Pena
,
G.
,
Sotelo
,
J.
, and
Verdera
,
D.
,
2014
, “
Evaluation of an Induction-Assisted Friction Stir Welding Technique for Super Duplex Stainless Steels
,”
Surf. Interface Anal.
,
46
(
10–11
), pp.
892
896
.
20.
Song
,
K. H.
,
Tsumura
,
T.
, and
Nakata
,
K.
,
2019
, “
Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600
,”
Mater. Trans.
,
50
(
7
), pp.
1832
1837
.
21.
Sun
,
Y. F.
,
Konishi
,
Y.
,
Kamai
,
M.
, and
Fujii
,
H.
,
2013
, “
Microstructure and Mechanical Properties of S45C Steel Prepared by Laser-Assisted Friction Stir Welding
,”
Mater. Des.
,
47
, pp.
842
849
.
22.
Joo
,
S.
,
2013
, “
Joining of Dissimilar AZ31B Magnesium Alloy and SS400 Mild Steel by Hybrid Gas Tungsten Arc Friction Stir Welding
,”
Met. Mater. Int.
,
19
(
6
), pp.
1251
1257
.
23.
Ahmad
,
B.
,
Galloway
,
A.
, and
Toumpis
,
A.
,
2019
, “
Numerical Optimisation of Laser Assisted Friction Stir Welding of Structural Steel
,”
Sci. Technol. Weld. Join.
,
24
(
6
), pp.
548
558
.
24.
Lv
,
X.
,
Wu
,
C.
,
Yang
,
C.
, and
Padhy
,
G. K.
,
2018
, “
Weld Microstructure and Mechanical Properties in Ultrasonic Enhanced Friction Stir Welding of Al Alloy to Mg Alloy
,”
J. Mater. Process. Technol.
,
254
, pp.
145
157
.
25.
Shi
,
L.
,
Wu
,
C. S.
, and
Liu
,
X. C.
,
2015
, “
Modeling the Effects of Ultrasonic Vibration on Friction Stir Welding
,”
J. Mater. Process. Technol.
,
222
, pp.
91
102
.
26.
Verma
,
M.
,
Ahmed
,
S.
, and
Saha
,
P.
,
2021
, “
Challenges, Process Requisites/Inputs, Mechanics and Weld Performance of Dissimilar Micro-Friction Stir Welding (Dissimilar ΜFSW): A Comprehensive Review
,”
J. Manuf. Processes
,
68
, pp.
249
276
.
27.
Huang
,
Y.
,
Meng
,
X.
,
Lv
,
Z.
,
Huang
,
T.
,
Zhang
,
Y.
,
Cao
,
J.
,
Zhou
,
L.
, and
Feng
,
J.
,
2019
, “
Microstructures and Mechanical Properties of Micro Friction Stir Welding (ΜFSW) of 6061-T4 Aluminum Alloy
,”
J. Mater. Res. Technol.
,
8
(
1
), pp.
1084
1091
.
28.
Cui
,
L.
,
Zhang
,
C.
,
Liu
,
Y.
,
Liu
,
X.
,
Wang
,
D.
, and
Li
,
H.
,
2018
, “
Recent Progress in Friction Stir Welding Tools Used for Steels
,”
J. Iron Steel Res. Int.
,
25
(
5
), pp.
477
486
.
29.
Tiwari
,
A.
,
Pankaj
,
P.
,
Suman
,
S.
,
Singh
,
P.
,
Biswas
,
P.
,
Pal
,
S.
, and
Rao
,
A. G.
,
2021
, “
Effect of Plasma Preheating on Weld Quality and Tool Life During Friction Stir Welding of DH36 Steel
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
235
(
9
), pp.
1458
1472
.
30.
Lotfi
,
A. H.
, and
Nourouzi
,
S.
,
2014
, “
Predictions of the Optimized Friction Stir Welding Process Parameters for Joining AA7075-T6 Aluminum Alloy Using Preheating System
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1717
1737
.
31.
Sun
,
Y. F.
,
Shen
,
J. M.
,
Morisada
,
Y.
, and
Fujii
,
H.
,
2014
, “
Spot Friction Stir Welding of Low Carbon Steel Plates Preheated by High Frequency Induction
,”
Mater. Des.
,
54
, pp.
450
457
.
32.
Sun
,
Y. F.
,
Fujii
,
H.
,
Takaki
,
N.
, and
Okitsu
,
Y.
,
2012
, “
Microstructure and Mechanical Properties of Mild Steel Joints Prepared by a Flat Friction Stir Spot Welding Technique
,”
Mater. Des.
,
37
, pp.
384
392
.
33.
Sun
,
Y. F.
, and
Fujii
,
H.
,
2011
, “
The Effect of SiC Particles on the Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper Joints
,”
Mater. Sci. Eng. A
,
528
(
16–17
), pp.
5470
5475
.
34.
Bang
,
H.
,
Bang
,
H.
,
Jeon
,
G.
,
Oh
,
I.
, and
Ro
,
C.
,
2012
, “
Gas Tungsten Arc Welding Assisted Hybrid Friction Stir Welding of Dissimilar Materials Al6061-T6 Aluminum Alloy and STS304 Stainless Steel
,”
Mater. Des.
,
37
, pp.
48
55
.
35.
Safi
,
S. V.
,
Amirabadi
,
H.
,
Besharati Givi
,
M. K.
, and
Safi
,
S. M.
,
2016
, “
The Effect of Preheating on Mechanical Properties of Friction Stir Welded Dissimilar Joints of Pure Copper and AA7075 Aluminum Alloy Sheets
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9
), pp.
2401
2411
.
36.
Reimann
,
M.
,
Goebel
,
J.
, and
dos Santos
,
J. F.
,
2017
, “
Microstructure and Mechanical Properties of Keyhole Repair Welds in AA 7075-T651 Using Refill Friction Stir Spot Welding
,”
Mater. Des.
,
132
, pp.
283
294
.
37.
Ni
,
Y.
,
Fu
,
L.
, and
Chen
,
H. Y.
,
2019
, “
Effects of Travel Speed on Mechanical Properties of AA7075-T6 Ultra-Thin Sheet Joints Fabricated by High Rotational Speed Micro Pinless Friction Stir Welding
,”
J. Mater. Process. Technol.
,
265
, pp.
63
70
.
38.
Meng
,
X.
,
Huang
,
Y.
,
Cao
,
J.
,
Shen
,
J.
, and
dos Santos
,
J. F.
,
2021
, “
Recent Progress on Control Strategies for Inherent Issues in Friction Stir Welding
,”
Prog. Mater. Sci.
,
115
, p.
100706
.
39.
Huang
,
Y.
,
Meng
,
X.
,
Zhang
,
Y.
,
Cao
,
J.
, and
Feng
,
J.
,
2017
, “
Micro Friction Stir Welding of Ultra-Thin Al-6061 Sheets
,”
J. Mater. Process. Technol.
,
250
, pp.
313
319
.
You do not currently have access to this content.