Abstract

While industrial gas turbine blades are commonly designed to resist creep and high-cycle fatigue (HCF) failure, the combination of these two loading conditions is seldom considered. The effect of creep damage elicited prior or concurrent to HCF loading is not well established and can significantly reduce the HCF lifetime of these critical components. A comprehensive life prediction model capable of capturing these superimposed effects is needed to ensure current reliability standards are maintained when designing aggressively loaded, next-generation industrial gas turbine blades. The consequence of combined HCF and creep loading to the lifetime a Ni-base superalloy is characterized and modeled in this study. Composition and calibration of the model are carried out using data from HCF tests conducted on virgin and pre-crept specimens at 750 °C and 850 °C. The experimental data encompass a wide range of stress ratios and pre-creep strains to mimic to the expansive set of potential turbine blade loading conditions. The proposed microstructurally informed model is based on existing principles and relies on test data and information gathered from a comprehensive failure analysis of the tested samples.

References

1.
Materials, N. S. O. P.-P.
,
1956
, “
Cooperative Investigation of Relationship Between Static and Fatigue Properties of Wrought N-155 Alloy at Elevated Temperatures
,”
National Advisory Committee for Aeronautics
,
Washington, DC
, Report No. 1288.
2.
Forrest
,
P. G.
,
1962
,
Fatigue of Metals
,
Pergamon
,
New York
.
3.
Lukáš
,
P.
,
Kunz
,
L.
, and
Sklenička
,
V.
,
1990
, “
Interaction of High Cycle Fatigue With High Temperature Creep in Two Creep-Resistant Steels
,”
Mater. Sci. Eng. A
,
129
, pp.
249
255
.
4.
Lukáš
,
P.
,
Kunz
,
L.
, and
Svoboda
,
M.
,
2002
, “
Interaction of High-Cycle Fatigue With High-Temperature Creep in Superalloy Single Crystals
,”
Z. Metallkd.
,
93
(
7
), pp.
661
665
.
5.
Lukáš
,
P.
,
Kunz
,
L.
, and
Sklenička
,
V.
,
1990
, “
Creep, High-Cycle Fatigue and Cyclic Creep in Copper at 500 °C
,”
Res Mechanica
,
29
, pp.
345
358
.
6.
Horník
,
V.
,
Šmíd
,
M.
,
Hutař
,
P.
,
Kunz
,
L.
, and
Hrbáček
,
K.
,
2016
, “
Interaction of Creep and High Cycle Fatigue in IN 713LC Superalloy
,”
Solid State Phenomina
,
258
, pp.
585
598
.
7.
Sarkar
,
A.
,
Okazaki
,
M.
,
Nagesha
,
A.
,
Parameswaran
,
P.
,
Sandhya
,
R.
, and
Laha
,
K.
,
2017
, “
Mechanisms of Failure Under Low Cycle Fatigue, High Cycle Fatigue and Creep Interactions in Combined Cycling in a Type 316LN Stainless Steel
,”
Mater. Sci. Eng. A
,
683
, pp.
24
36
.
8.
Wright
,
P. K.
,
Jain
,
M.
, and
Cameron
,
D.
,
2004
, “
High Cycle Fatigue in a Single Crystal Superalloy: Time Dependence at Elevated Temperature
,”
Superalloys
,
2004
, pp.
657
666
.
9.
Golub
,
V. P.
,
Krizhanovskii
,
V. I.
,
Pogrebnyak
,
A. D.
, and
Romanov
,
A. V.
,
2005
, “
A Method of Modeling the Interaction of Creep and High-Cycle Fatigue
,”
Internat. Appl. Mechanic.
,
41
(
1
), pp.
14
23
.
10.
ASTM International
,
2018
,
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
11.
ASTM International
,
2015
,
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
12.
Garofalo
,
F.
,
1965
,
Fundamentals of Creep and Creep-Rupture in Metals
,
Macmillan
,
New York
.
13.
Bouchenot
,
T.
,
Gordon
,
A. P.
,
Shinde
,
S.
, and
Gravett
,
P.
,
2014
, “
Approach for Stavilized Peak/Valley Stress Modeling of Non-Isothermal Fatigue of a DS Ni-Base Superalloy
,”
Mater. Perform. Charact.
,
3
(
2
), pp.
16
43
.
14.
Bouchenot
,
T.
,
Felemban
,
B.
,
Mejia
,
C.
, and
Gordon
,
A. P.
,
2016
, “
Development of Noninteraction Material Models With Cyclic Hardening
,”
ASME J. Eng. Mater. Technol.
,
138
(4), p.
041007
.
15.
Harris
,
K.
,
1984
, “
High Ductility Nickel Alloy Directional Casting of Parts for High Temperature and Stress Operation
,” U. Patent, ed., United States.
16.
Huang
,
H.-E.
, and
Koo
,
C.-H.
,
2004
, “
Characteristics and Mechanical Properties of Polycrystalline CM 247 LC Superalloy Casting
,”
Mater. Trans.
,
45
(
2
), pp.
562
568
.
17.
Nickel Development Institute
,
1995
,
High-Temperature High-Strength Nickel Base Alloys
,
Nickel Development Institute
,
Publication No. 393
.
18.
Kaufman
,
M.
,
1984
, “Properties of Cast Mar-M-247 for Turbine Blisk Applications,”
Superalloys 1984
,
M.
Gell
, et al
, ed.,
Metallurgical Society of AIME
,
Warrendale, PA
, pp.
43
52
.
19.
Varma
,
V. K.
,
Mishra
,
R. S.
,
Joshi
,
V. A.
, and
Rao
,
B. V.
,
1995
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of CM247LC Cast Superalloy Rotor
,”
Trans. Indian Inst. Met.
,
48
(
2
), pp.
69
69
.
20.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Transac. ASME
,
74
, pp.
765
775
.
21.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 20 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
22.
Haibach
,
E.
,
2003
, “
Analytical Strength Assessment of Components in Mechanical Engineering: FKM-Guideline
,” VDMA.
23.
Dietmann
,
H.
,
1973
, “
Festigkeitsberechnung bei Mehrachsiger Schwingbeanspruchung
,”
Konstruktion
,
25
(
5
), pp.
181
189
.
24.
Gerber
,
W. Z.
,
1874
, “
Calculation of the Allowable Stresses in Iron Structures
,”
Z. Bayer Archit. Ing. Ver
,
6
(
6
), pp.
101
110
.
You do not currently have access to this content.