Abstract

The patent database is often used by designers to search for inspirational stimuli for innovative design opportunities because of the large size, extensive variety, and the massive quantity of design information contained in patent documents. Growing work on design-by-analogy has adopted various vectorization approaches for associating design documents. However, they only focused on text analysis and ignored visual information. Research in engineering design and cognitive psychology has shown that visual stimuli may benefit design ideation. In this study, we focus on visual design stimuli and automatically derive the vector space and the design feature vectors representing design images. The automatic vectorization approach uses a novel convolutional neural network architecture named Dual-Visual Geometry Group (VGG) aiming to accomplish two tasks: visual material-type prediction and international patent classification (IPC) section-label predictions. The derived feature vectors that embed both visual characteristics and technology-related knowledge can be potentially utilized to guide the retrieval and use of near-field and far-field design stimuli according to their vector distances. We report the accuracy of the training tasks and also use a case study to demonstrate the advantages of design image retrievals based on our model.

References

1.
Song
,
B.
, and
Luo
,
J.
,
2017
, “
Mining Patent Precedents for Data-Driven Design: The Case of Spherical Rolling Robots
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111420
. 10.1115/1.4037613
2.
Hatchuel
,
A.
, and
Weil
,
B.
,
2009
, “
CK Design Theory: An Advanced Formulation
,”
Res. Eng. Des.
,
19
(
4
), p.
181
. 10.1007/s00163-008-0043-4
3.
Basnet
,
S.
, and
Magee
,
C. L.
,
2016
, “
Modeling of Technological Performance Trends Using Design Theory
,”
Des. Sci.
,
2
(
E8
). 10.1017/dsj.2016.8
4.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
. 10.1115/1.4001110
5.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
6.
Chan
,
J.
, and
Schunn
,
C.
,
2015
, “
The Impact of Analogies on Creative Concept Generation: Lessons From an in Vivo Study in Engineering Design
,”
Cogn. Sci.
,
39
(
1
), pp.
126
155
. 10.1111/cogs.12127
7.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
ASME J. Mech. Des.
,
140
(
7
), p.
071101
. 10.1115/1.4040165
8.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
. 10.1016/j.destud.2019.01.001
9.
Goucher-Lambert
,
K.
,
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091401
. 10.1115/1.4046077
10.
Goucher-Lambert
,
K.
,
Moss
,
J.
, and
Cagan
,
J.
,
2019
, “
A Neuroimaging Investigation of Design Ideation With and Without Inspirational Stimuli—Understanding the Meaning of Near and Far Stimuli
,”
Des. Stud.
,
60
, pp.
1
38
. 10.1016/j.destud.2018.07.001
11.
Luo
,
J.
,
Song
,
B.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Design Opportunity Conception Using the Total Technology Space Map
,”
AI EDAM
,
32
(
4
), pp.
449
461
. 10.1017/S0890060418000094
12.
McCaffrey
,
T.
, and
Spector
,
L.
,
2018
, “
An Approach to Human–Machine Collaboration in Innovation
,”
AI EDAM
,
32
(
1
), pp.
1
15
. 10.1017/S0890060416000524
13.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
. 10.1115/1.4028093
14.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
. 10.1115/1.4023484
15.
Larkin
,
J. H.
, and
Simon
,
H. A.
,
1987
, “
Why a Diagram Is (Sometimes) Worth Ten Thousand Words
,”
Cogn. Sci.
,
11
(
1
), pp.
65
100
. 10.1111/j.1551-6708.1987.tb00863.x
16.
Ullman
,
D. G.
,
Wood
,
S.
, and
Craig
,
D.
,
1990
, “
The Importance of Drawing in the Mechanical Design Process
,”
Comput. Graph.
,
14
(
2
), pp.
263
274
. 10.1016/0097-8493(90)90037-X
17.
Bhatti
,
N.
,
Hanbury
,
A.
, and
Stottinger
,
J.
,
2018
, “
Contextual Local Primitives for Binary Patent Image Retrieval
,”
Multimed. Tools Appl.
,
77
(
7
), pp.
9111
9151
. 10.1007/s11042-017-4808-5
18.
Sio
,
U. N.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2015
, “
Fixation or Inspiration? A Meta-analytic Review of the Role of Examples on Design Processes
,”
Des. Stud.
,
39
, pp.
70
99
. 10.1016/j.destud.2015.04.004
19.
Goldschmidt
,
G.
, and
Smolkov
,
M.
,
2006
, “
Variances in the Impact of Visual Stimuli on Design Problem Solving Performance
,”
Des. Stud.
,
27
(
5
), pp.
549
569
. 10.1016/j.destud.2006.01.002
20.
Laing
,
S.
, and
Masoodian
,
M.
,
2016
, “
A Study of the Influence of Visual Imagery on Graphic Design Ideation
,”
Des. Stud.
,
45
, pp.
187
209
. 10.1016/j.destud.2016.04.002
21.
McKoy
,
F. L.
,
Vargas-Hernández
,
N.
,
Summers
,
J. D.
, and
Shah
,
J. J.
,
2001
, “
Influence of Design Representation on Effectiveness of Idea Generation
,”
Proceedings of the 2011 ASME Design Engineering Technical Conference (DETC)
,
Washington, DC
,
Aug. 28–31
, pp.
39
48
.
22.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Ai Edam
,
22
(
2
), pp.
85
100
.
23.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2008
, “
The Effect of Representation of Triggers on Design Outcomes
,”
Artif. Intell. Eng. Des. Anal. Manuf. AI EDAM
,
22
(
2
), p.
101
. 10.1017/S0890060408000073
24.
Csurka
,
G.
,
Renders
,
J.-M.
, and
Jacquet
,
G.
,
2011
, “
XRCE’s Participation at Patent Image Classification and Image-Based Patent Retrieval Tasks of the Clef-IP 2011
,”
The Workshop Proceedings of the 2011 Cross-Language Evaluation Forum (CLEF)
,
Amsterdam, The Netherlands
,
Sept. 19–22
.
25.
Vrochidis
,
S.
,
Papadopoulos
,
S.
,
Moumtzidou
,
A.
,
Sidiropoulos
,
P.
,
Pianta
,
E.
, and
Kompatsiaris
,
I.
,
2010
, “
Towards Content-Based Patent Image Retrieval: A Framework Perspective
,”
World Pat. Inf.
,
32
(
2
), pp.
94
106
. 10.1016/j.wpi.2009.05.010
26.
Huet
,
B.
,
Kern
,
N. J.
,
Guarascio
,
G.
, and
Merialdo
,
B.
,
2001
, “
Relational Skeletons for Retrieval in Patent Drawings
,”
Proceedings of the 2001 International Conference on Image Processing (ICIP)
,
Thessaloniki, Greece
,
Oct. 7–10
, pp.
737
740
.
27.
Tiwari
,
A.
, and
Bansal
,
V.
,
2004
, “
PATSEEK: Content Based Image Retrieval System for Patent Database
,”
Proceedings of the 2004 International Conference on Electronic Business (ICEB)
,
Beijing, China
,
Dec. 5–9
, pp.
1167
1171
.
28.
Zhiyuan
,
Z.
,
Juan
,
Z.
, and
Bin
,
X.
,
2007
, “
An Outward-Appearance Patent-Image Retrieval Approach Based on the Contour-Description Matrix
,”
Proceedings of the 2007 Japan-China Joint Workshop on Frontier of Computer Science and Technology (FCST)
,
Wuhan, China
,
Nov. 1–3
, pp.
86
89
.
29.
Datta
,
R.
,
Joshi
,
D.
,
Li
,
J.
, and
Wang
,
J. Z.
,
2008
, “
Image Retrieval: Ideas, Influences, and Trends of the New Age
,”
ACM Comput. Surv.
,
40
(
2
), pp.
1
60
. 10.1145/1348246.1348248
30.
Smeulders
,
A. W. M.
,
Worring
,
M.
,
Santini
,
S.
,
Gupta
,
A.
, and
Jain
,
R.
,
2000
, “
Content-Based Image Retrieval at the End of the Early Years
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
12
), pp.
1349
1380
. 10.1109/34.895972
31.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
. 10.1109/TPAMI.2013.50
32.
Zheng
,
L.
,
Yang
,
Y.
, and
Tian
,
Q.
,
2017
, “
SIFT Meets CNN: A Decade Survey of Instance Retrieval
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
40
(
5
), pp.
1224
1244
. 10.1109/TPAMI.2017.2709749
33.
Ji
,
Y.
,
Qiu
,
Q.
,
Feng
,
P.
, and
Wu
,
J.
,
2019
, “
Empirical Study on the Impact of Knowledge in International Patent Classification on Design Inspiration of Undergraduate Students
,”
Int. J. Technol. Des. Educ.
,
29
(
4
), pp.
803
820
. 10.1007/s10798-018-9457-0
34.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), p.
45
. 10.1037/0003-066X.52.1.45
35.
Ward
,
T. B.
,
1998
, “
Analogical Distance and Purpose in Creative Thought: Mental Leaps Versus Mental Hops
,”
Adv. Analog. Res. Integr. Theory Data from Cogn. Comput. Neural Sci.
, pp.
221
230
.
36.
Poze
,
T.
,
1983
, “
Analogical Connections: The Essence of Creativity
,”
J. Creat. Behav.
,
17
(
4
), pp.
240
258
. 10.1002/j.2162-6057.1983.tb00359.x
37.
Song
,
B.
,
Srinivasan
,
V.
, and
Luo
,
J.
,
2017
, “
Patent Stimuli Search and Its Influence on Ideation Outcomes
,”
Des. Sci.
,
3
(
e25
). 10.1017/dsj.2017.27
38.
Kim
,
H. H. M.
,
Liu
,
Y.
,
Wang
,
C. C. L.
, and
Wang
,
Y.
,
2017
, “
Data-Driven Design (D3)
,”
ASME J. Mech. Des.
,
139
(
11
), p.
110301
. 10.1115/1.4037943
39.
Luo
,
J.
,
Yan
,
B.
, and
Wood
,
K.
,
2017
, “
InnoGPS for Data-Driven Exploration of Design Opportunities and Directions: The Case of Google Driverless Car Project
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111416
. 10.1115/1.4037680
40.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
. 10.1007/s00163-014-0186-4
41.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
. 10.1016/j.eswa.2019.112995
42.
Rahman
,
M. H.
,
Xie
,
C.
, and
Sha
,
Z.
,
2019
, “
A Deep Learning Based Approach to Predict Sequential Design Decisions
,”
Proceedings of the 2019 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Anaheim, CA
,
Aug. 18–21
, p. V001T02A029.
43.
Hu
,
J.
,
Qi
,
J.
, and
Peng
,
Y.
,
2015
, “
New CBR Adaptation Method Combining with Problem–Solution Relational Analysis for Mechanical Design
,”
Comput. Ind.
,
66
, pp.
41
51
. 10.1016/j.compind.2014.08.004
44.
Ma
,
J.
,
Jiang
,
S.
,
Hu
,
J.
,
Shen
,
J.
,
Qi
,
J.
,
Tian
,
P.
, and
others
,
2018
, “
Exploring the Use of Long Short-Term Memory (LSTM) in Functional Based Bioinspired Design
,”
Proceedings of the 5th International Conference on Design Creativity (ICDC)
,
Bath, UK
,
Jan. 31–Feb. 2
, pp.
338
345
.
45.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111301
. 10.1115/1.4044690
46.
Al’shuller
,
G. S.
, and
Shapiro
,
R. B.
,
1956
, “
Psychology of Inventive Creativity
,”
Issues Psychol.
, (
6
), pp.
37
49
.
47.
Shai
,
O.
, and
Reich
,
Y.
,
2004
, “
Infused Design: Theory
,”
Res. Eng. Des.
,
15
(
2
), pp.
93
107
. 10.1007/s00163-004-0047-7
48.
Reich
,
Y.
, and
Shai
,
O.
,
2012
, “
The Interdisciplinary Engineering Knowledge Genome
,”
Res. Eng. Des.
,
23
(
3
), pp.
251
264
. 10.1007/s00163-012-0129-x
49.
Chakrabarti
,
A.
,
Siddharth
,
L.
,
Dinakar
,
M.
,
Panda
,
M.
,
Palegar
,
N.
, and
Keshwani
,
S.
,
2017
, “
Idea Inspire 3.0—A Tool for Analogical Design
,”
Proceedings of the 2017 International Conference on Research Into Design (ICoRD)
,
Guwahati, India
,
Jan. 9–11
, pp.
475
485
.
50.
Goel
,
A. K.
,
Vattam
,
S.
,
Wiltgen
,
B.
, and
Helms
,
M.
,
2012
, “
Cognitive, Collaborative, Conceptual and Creative-Four Characteristics of the Next Generation of Knowledge-Based CAD Systems: A Study in Biologically Inspired Design
,”
Comput. Des.
,
44
(
10
), pp.
879
900
. 10.1016/j.cad.2011.03.010
51.
Deldin
,
J.-M.
, and
Schuknecht
,
M.
,
2014
,
Biologically Inspired Design
,
Springer
,
New York
, pp.
17
27
.
52.
He
,
Y.
,
Camburn
,
B.
,
Liu
,
H.
,
Luo
,
J.
,
Yang
,
M.
, and
Wood
,
K.
,
2019
, “
Mining and Representing the Concept Space of Existing Ideas for Directed Ideation
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121101
. 10.1115/1.4044399
53.
Cascini
,
G.
, and
Russo
,
D.
,
2007
, “
Computer-Aided Analysis of Patents and Search for TRIZ Contradictions
,”
Int. J. Prod. Dev.
,
4
(
1
), pp.
52
67
. 10.1504/IJPD.2007.011533
54.
Mukherjea
,
S.
,
Bamba
,
B.
, and
Kankar
,
P.
,
2005
, “
Information Retrieval and Knowledge Discovery Utilizing a Biomedical Patent Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
8
), pp.
1099
1110
. 10.1109/TKDE.2005.130
55.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2019
, “
Computer-Aided Design Ideation Using InnoGPS
,”
Proceedings of the 2019 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Anaheim, CA
,
Aug. 18–21
, p. V02AT03A011.
56.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Technology Knowledge Graph for Design Exploration: Application to Designing the Future of Flying Cars
,”
Proceedings of the 2019 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Anaheim, CA
,
Aug. 18–21
, p. V001T02A028.
57.
Sarica
,
S.
,
Song
,
B.
,
Low
,
E.
, and
Luo
,
J.
,
2019
, “
Engineering Knowledge Graph for Keyword Discovery in Patent Search
,”
Proceedings of the Design Society: International Conference on Engineering Design (ICED)
,
The Netherlands
,
Aug. 5–8
, pp.
2249
2258
.
58.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proceedings of the Design Society: DESIGN Conference
,
Virtual
,
Oct. 26–29
, Vol.
1
, pp.
167
176
. http://dx.doi.org/10.1017/dsd.2020.5
59.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
. 10.3758/BF03195939
60.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
. 10.1109/64.590078
61.
Gentner
,
D.
, and
Smith
,
L.
,
2012
, “
Analogical Reasoning
,”
Encycl. Hum. Behav.
,
1
, pp.
130
136
. 10.1016/B978-0-12-375000-6.00022-7
62.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
. 10.1115/1.4004396
63.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
,
2010
, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
(
2
), pp.
169
186
. 10.1016/j.destud.2009.10.003
64.
Lowe
,
D. G.
,
2004
, “
Distinctive Image Features From Scale-Invariant Keypoints
,”
Int. J. Comput. Vis.
,
60
(
2
), pp.
91
110
. 10.1023/B:VISI.0000029664.99615.94
65.
Sidiropoulos
,
P.
,
Vrochidis
,
S.
, and
Kompatsiaris
,
I.
,
2010
, “
Adaptive Hierarchical Density Histogram for Complex Binary Image Retrieval
,”
Proceedings of the 2010 International Workshop on Content Based Multimedia Indexing (CBMI)
,
Grenoble, France
,
June 23–25
, pp.
1
6
.
66.
Radenović
,
F.
,
Tolias
,
G.
, and
Chum
,
O.
,
2016
, “
CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples
,”
Proceedings of the 2016 European Conference on Computer Vision (ECCV)
,
Amsterdam, The Netherlands
,
Oct. 11–14
, pp.
3
20
.
67.
Tolias
,
G.
,
Sicre
,
R.
, and
Jégou
,
H.
,
2016
, “
Particular Object Retrieval with Integral Max-Pooling of CNN Activations
,”
Proceedings of the 4th International Conference on Learning Representations (ICLR)
,
San Juan, Puerto Rico
,
May 2–4
.
68.
Kalantidis
,
Y.
,
Mellina
,
C.
, and
Osindero
,
S.
,
2016
, “
Cross-Dimensional Weighting for Aggregated Deep Convolutional Features
,”
Proceedings of the 2016 European Conference on Computer Vision (ECCV)
,
Amsterdam, The Netherlands
,
Oct. 11–14
, pp.
685
701
.
69.
Gordo
,
A.
,
Almazán
,
J.
,
Revaud
,
J.
, and
Larlus
,
D.
,
2016
, “
Deep Image Retrieval: Learning Global Representations for Image Search
,”
Proceedings of the 2016 European Conference on Computer Vision (ECCV)
,
Amsterdam, The Netherlands
,
Oct. 11–14
, pp.
241
257
.
70.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
Proceedings of the 3rd International Conference on Learning Representations (ICLR)
,
San Diego, CA
,
May 7–9
.
71.
Gatys
,
L. A.
,
Ecker
,
A. S.
, and
Bethge
,
M.
,
2016
, “
Image Style Transfer Using Convolutional Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
2414
2423
.
72.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
Imagenet Classification with Deep Convolutional Neural Networks
,”
Advances in Neural Information Processing Systems (NeurIPS)
,
Lake Tahoe, NV
,
Dec. 3–6
, pp.
1097
1105
.
73.
Ramachandram
,
D.
, and
Taylor
,
G. W.
,
2017
, “
Deep Multimodal Learning: A Survey on Recent Advances and Trends
,”
IEEE Signal Process. Mag.
,
34
(
6
), pp.
96
108
. 10.1109/MSP.2017.2738401
74.
Baeza-Yates
,
R.
,
Ribeiro-Neto
,
B.
, and
others
,
1999
,
Modern Information Retrieval
,
ACM Press
,
New York
.
75.
Piroi
,
F.
,
Lupu
,
M.
,
Hanbury
,
A.
, and
Zenz
,
V.
,
2011
, “
CLEF-IP 2011: Retrieval in the Intellectual Property Domain
,”
The Workshop Proceedings of the 2011 Cross-Language Evaluation Forum (CLEF)
,
Amsterdam
,
Sept 19–22
.
76.
Van Dyk
,
D. A.
, and
Meng
,
X.-L.
,
2001
, “
The Art of Data Augmentation
,”
J. Comput. Graph. Stat.
,
10
(
1
), pp.
1
50
. 10.1198/10618600152418584
77.
Redmon
,
J.
, and
Farhadi
,
A.
,
2018
, “
Yolov3: An Incremental Improvement
,” arXiv Prepr. arXiv1804.02767.
78.
Benson
,
C. L.
, and
Magee
,
C. L.
,
2013
, “
A Hybrid Keyword and Patent Class Methodology for Selecting Relevant Sets of Patents for a Technological Field
,”
Scientometrics
,
96
(
1
), pp.
69
82
. 10.1007/s11192-012-0930-3
79.
Benson
,
C. L.
, and
Magee
,
C. L.
,
2015
, “
Technology Structural Implications From the Extension of a Patent Search Method
,”
Scientometrics
,
102
(
3
), pp.
1965
1985
. 10.1007/s11192-014-1493-2
80.
Benson
,
C. L.
,
Triulzi
,
G.
, and
Magee
,
C. L.
,
2018
, “
Is There a Moore’s Law for 3D Printing?
,”
3D Print. Addit. Manuf.
,
5
(
1
), pp.
53
62
. 10.1089/3dp.2017.0041
81.
Feng
,
S.
, and
Magee
,
C. L.
,
2020
, “
Technological Development of Key Domains in Electric Vehicles: Improvement Rates, Technology Trajectories and Key Assignees
,”
Appl. Energy
,
260
, p.
114264
. 10.1016/j.apenergy.2019.114264
82.
Benson
,
C. L.
, and
Magee
,
C. L.
,
2016
,
Using Enhanced Patent Data for Future-Oriented Technology Analysis
,
Springer
,
New York
, pp.
119
131
. 10.1007/978-3-319-39056-7_7
83.
Zhang
,
X.
,
Zou
,
J.
,
He
,
K.
, and
Sun
,
J.
,
2015
, “
Accelerating Very Deep Convolutional Networks for Classification and Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
38
(
10
), pp.
1943
1955
. 10.1109/TPAMI.2015.2502579
84.
Huang
,
G.
,
Liu
,
Z.
,
Van Der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2017
, “
Densely Connected Convolutional Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
4700
4708
.
85.
Maaten van der
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
86
), pp.
2579
2605
.
86.
Gautam
,
R.
,
Gedam
,
A.
,
Zade
,
A.
, and
Mahawadiwar
,
A.
,
2017
, “
Review on Development of Industrial Robotic Arm
,”
Int. Res. J. Eng. Technol.
,
4
(
03
), pp.
1752
1755
.
87.
Ajlouny
,
N. S.
,
1975
, “
Programmable Universal Transfer Device
,” United States Patent, Patent No. US3884363A.
You do not currently have access to this content.