Abstract

Surrogate models have several uses in engineering design, including speeding up design optimization, noise reduction, test measurement interpolation, gradient estimation, portability, and protection of intellectual property. Traditionally, surrogate models require that all training data conform to the same parametrization (e.g., design variables), limiting design freedom and prohibiting the reuse of historical data. In response, this article proposes graph-based surrogate models (GSMs) for trusses. The GSM can accurately predict displacement fields from static loads given the structure’s geometry as input, enabling training across multiple parametrizations. GSMs build upon recent advancements in geometric deep learning, which have led to the ability to learn on undirected graphs: a natural representation for trusses. To further promote flexible surrogate models, this article explores transfer learning within the context of engineering design and demonstrates positive knowledge transfer across data sets of different topologies, complexities, loads, and applications, resulting in more flexible and data-efficient surrogate models for trusses.

References

1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
2.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley
,
Chichester, West Sussex, England, Hoboken, NJ
.
3.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Kevin Tucker
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
4.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
5.
Cressie
,
N.
,
1988
, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geology
,
20
(
4
), pp.
405
421
.
6.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
,
1986
, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions
,”
SIAM J. Sci. Stat. Comput.
,
7
(
2
), pp.
639
659
.
7.
Ho
,
T.
,
1995
, “
Random Decision Forests
,”
Proceedings of 3rd International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
,
Aug. 14–16
, pp.
278
282
.
8.
Papadrakakis
,
M.
,
Lagaros
,
N. D.
, and
Tsompanakis
,
Y.
,
1998
, “
Structural Optimization Using Evolution Strategies and Neural Networks
,”
Comput. Methods. Appl. Mech. Eng.
,
156
(
1–4
), pp.
309
333
.
9.
Tseranidis
,
S.
,
Brown
,
N. C.
, and
Mueller
,
C. T.
,
2016
, “
Data-Driven Approximation Algorithms for Rapid Performance Evaluation and Optimization of Civil Structures
,”
Auto. Constr.
,
72
, pp.
279
293
.
10.
Brown
,
N. C.
, and
Mueller
,
C. T.
,
2019
, “
Design Variable Analysis and Generation for Performance-Based Parametric Modeling in Architecture
,”
Int. J. Archit. Comput.
,
17
(
1
), pp.
36
52
.
11.
Danhaive
,
R.
, and
Mueller
,
C.
,
2021
, “
Design Subspace Learning: Structural Design Space Exploration Using Performance-Conditioned Generative Modeling
,”
Auto. Constr.
,
127
, p.
103664
.
12.
Xu
,
J.
, and
Duraisamy
,
K.
,
2020
, “
Multi-Level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-Temporal Dynamics
,”
Comput. Methods. Appl. Mech. Eng.
,
372
, p.
113379
.
13.
Xuereb Conti
,
Z.
, and
Kaijima
,
S.
,
2018
, “
A Flexible Simulation Metamodel for Exploring Multiple Design Spaces
,”
Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS)
,
Boston, MA
,
July 16–20
.
14.
Ruizhongtai Qi
,
C.
,
2020
, “
Deep Learning on 3D Data
,”
3D Imaging Analysis and Applications
,
Liu
,
Y.
,
Pears
,
N.
,
Rosin
,
P.L.
, and
Huber
,
P.
, eds.,
Springer International Publishing
,
Cham
, pp.
513
566
.
15.
Ahmed
,
E.
,
Saint
,
A.
,
Shabayek
,
A. E. R.
,
Cherenkova
,
K.
,
Das
,
R.
,
Gusev
,
G.
,
Aouada
,
D.
, and
Ottersten
,
B.
,
2019
, “
A survey on Deep Learning Advances on Different 3D Data Representations
,”
ArXiv
. arXiv:1808.01462
16.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2021
, “
StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051005
.
17.
Messner
,
M. C.
,
2020
, “
Convolutional Neural Network Surrogate Models for the Mechanical Properties of Periodic Structures
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024503
.
18.
Yoo
,
S.
,
Lee
,
S.
,
Kim
,
S.
,
Hwang
,
K. H.
,
Park
,
J. H.
, and
Kang
,
N.
,
2021
, “
Integrating Deep Learning Into CAD/CAE System: Generative Design and Evaluation of 3D Conceptual Wheel
,”
Struct Multidisc Optim
, pp.
1
23
.
19.
Madani
,
A.
,
Bakhaty
,
A.
,
Kim
,
J.
,
Mubarak
,
Y.
, and
Mofrad
,
M. R. K.
,
2019
, “
Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
084502
.
20.
Garland
,
A. P.
,
White
,
B. C.
,
Jensen
,
S. C.
, and
Boyce
,
B. L.
,
2021
, “
Pragmatic Generative Optimization of Novel Structural Lattice Metamaterials With Machine Learning
,”
Mater. Des.
,
203
, p.
109632
.
21.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
New York, USA
,
Aug. 13–17
, ACM, pp.
481
490
.
22.
Zhang
,
Z.
,
Jaiswal
,
P.
, and
Rai
,
R.
,
2018
, “
FeatureNet: Machining Feature Recognition Based on 3D Convolution Neural Network
,”
Comput. Aided Design
,
101
, pp.
12
22
.
23.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
24.
Umetani
,
N.
,
2017
, “
Exploring Generative 3D Shapes Using Autoencoder Networks
,”
SIGGRAPH Asia 2017 Technical Briefs on - SA’17
,
Bangkok, Thailand
,
Nov. 27–30
, ACM Press, pp.
1
4
.
25.
Baque
,
P.
,
Remelli
,
E.
,
Fleuret
,
F.
,
Fua
,
P.
,
Dy
,
J.
, and
Krause
,
A.
, “
Geodesic convolutional shape optimization
,”
International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
,
J.
Dy
, and
A.
Krause
, eds., Vol. 80, PMLR, pp.
472
481
.
26.
Cunningham
,
J. D.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2019
, “
An Investigation of Surrogate Models for Efficient Performance-Based Decoding of 3D Point Clouds
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121401
.
27.
Danhaive
,
R.
,
2020
,
Structural Design Synthesis Using Machine Learning
, PhD Thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
28.
Vlassis
,
N.
,
Ma
,
R.
, and
Sun
,
W.
,
2020
, “
Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity
,”
Comput. Methods. Appl. Mech. Eng.
,
371
, p.
113299
.
29.
Chang
,
K.-H.
, and
Cheng
,
C.-Y.
,
2020
, “
Learning to Simulate and Design for Structural Engineering
,”
International Conference on Machine Learning
,
Virtual, Online
,
July 13–17
.
30.
Cao
,
W.
,
Robinson
,
T.
,
Hua
,
Y.
,
Boussuge
,
F.
,
Colligan
,
A. R.
, and
Pan
,
W.
,
2020
, “
Graph Representation of 3D CAD Models for Machining Feature Recognition With Deep Learning
,”
Volume 11A: 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, American Society of Mechanical Engineers, p. V11AT11A003.
31.
Huang
,
J.
,
Sun
,
H.
,
Kwok
,
T.-H.
,
Zhou
,
C.
, and
Xu
,
W.
,
2020
, “
Geometric Deep Learning for Shape Correspondence in Mass Customization by Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061003
.
32.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
33.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
,
2017
, “
Geometric Deep Learning: Going Beyond Euclidean Data
,”
IEEE Signal Process. Magaz.
,
34
(
4
), pp.
18
42
, Preprint arXiv:1611.08097.
34.
Wu
,
Z.
,
Pan
,
S.
,
Chen
,
F.
,
Long
,
G.
,
Zhang
,
C.
, and
Yu
,
P. S.
,
2020
, “
A Comprehensive Survey on Graph Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
32
(
1
), pp.
1
21
.
35.
Zhou
,
J.
,
Cui
,
G.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2019
, “
Graph Neural Networks: A Review of Methods and Applications
,” Preprint arXiv:1812.08434[cs,stat].
36.
Masci
,
J.
,
Boscaini
,
D.
,
Bronstein
,
M. M.
, and
Vandergheynst
,
P.
,
2015
, “
Geodesic Convolutional Neural Networks on Riemannian Manifolds
,”
Proceedings of the IEEE International Conference on Computer Vision Workshops
,
Santiago, Chile
,
Dec. 13–16
.
37.
Boscaini
,
D.
,
Masci
,
J.
,
Rodoiá
,
E.
, and
Bronstein
,
M.
,
2016
, “
Learning Shape Correspondence With Anisotropic Convolutional Neural Networks
,”
Adv. Neur. Infor. Proc. Sys.
,
29
, pp.
3197
3205
.
38.
Monti
,
F.
,
Boscaini
,
D.
,
Masci
,
J.
,
Rodolá
,
E.
,
Svoboda
,
J.
, and
Bronstein
,
M. M.
,
2017
, “
Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Venice, Italy
,
Oct. 22–29
.
39.
Verma
,
N.
,
Boyer
,
E.
, and
Verbeek
,
J.
,
2018
, “
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, IEEE, pp.
2598
2606
.
40.
Hanocka
,
R.
,
Hertz
,
A.
,
Fish
,
N.
,
Giryes
,
R.
,
Fleishman
,
S.
, and
Cohen-Or
,
D.
,
2019
, “
MeshCNN: A Network With An Edge
,”
ACM Trans. Graphics
,
38
(
4
), pp.
1
12
.
41.
Mo
,
K.
,
Guerrero
,
P.
,
Yi
,
L.
,
Su
,
H.
,
Wonka
,
P.
,
Mitra
,
N.
, and
Guibas
,
L. J.
,
2019
, “
StructureNet: Hierarchical Graph Networks for 3D Shape Generation
,”
ArXiv
. arXiv:1908.00575
42.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE. Trans. Knowl. Data. Eng.
,
22
(
10
), p.
15
.
43.
Tan
,
C.
,
Sun
,
F.
,
Kong
,
T.
,
Zhang
,
W.
,
Yang
,
C.
, and
Liu
,
C.
,
2018
, “
A Survey on Deep Transfer Learning
,”
International Conference on Artificial Neural Networks
,
Rhodes, Greece
,
Oct. 4–7
.
44.
Lee
,
J.
,
Kim
,
H.
,
Lee
,
J.
, and
Yoon
,
S.
,
2017
, “
Transfer Learning for Deep Learning on Graph-Structured Data
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
San Francisco, CA
,
Feb. 4–9
, p.
7
.
45.
Li
,
D.
,
Wang
,
S.
,
Yao
,
S.
,
Liu
,
Y.-H.
,
Cheng
,
Y.
, and
Sun
,
X.-H.
,
2016
, “
Efficient Design Space Exploration by Knowledge Transfer
,”
Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
,
Pittsburgh, PA
,
Oct. 1–7
, p.
10
.
46.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
1
), pp.
2825
2830
.
47.
Rutten
,
D.
,
2014
,
Grasshopper 3D
,
Robert McNeel and Associates
,
version 6
, https://www.rhino3d.com/6/new/grasshopper/
48.
Huang
,
Y.
,
2020
,
Pyconmech
,
pypi
, https://pypi.org/project/pyconmech/
49.
Fey
,
M.
, and
Lenssen
,
J. E.
,
2019
, “
Fast Graph Representation Learning With PyTorch Geometric
,”
ArXiv
. https://arxiv.org/abs/1903.02428
50.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
ArXiv
. https://arxiv.org/abs/1412.6980
You do not currently have access to this content.