In the field of tissue engineering, a bioreactor is a valuable instrument that mimics a physiological environment to maintain live tissues in vitro. Although bioreactors are conceptually relatively simple, the vast majority of current bioreactors (commercial and custom-built) are not fully adapted to current research needs. Designing the optimal bioreactor requires a very thorough approach to a series of steps in the product development process. These four basic steps are: (1) identifying the needs and technical requirements, (2) defining and evaluating the related concepts, (3) designing the apparatus and drawing up the blueprints, and (4) building and validating the apparatus. Furthermore, the design has to be adapted to the specific purpose of the research and how the tissues will be used. In the emerging field of bioreactor research, roadmaps are needed to assist tissue engineering researchers as they embark on this process. The necessary multidisciplinary expertise covering micromechanical design, mechatronics, viscoelasticity, tissue culture, and human ergonomics is not necessarily available to all research teams. Therefore, the challenge of adapting and conducting each step in the product development process is significant. This paper details our proposal for a roadmap to accompany researchers in identifying their needs and technical requirements: step one in the product development process. Our roadmap proposal is set up in two phases. Phase 1 is based on the analysis of the bioreactor use cycle and phase 2 is based on the analysis of one specific and critical step in the use cycle: conducting stimulation and characterization protocols with the bioreactor. A meticulous approach to these two phases minimizes the risk of forgetting important requirements and strengthens the probability of acquiring or designing a high performance bioreactor.

References

1.
Bilodeau
,
K.
, and
Mantovani
,
D.
, 2006, “
Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review
,”
Tissue Eng.
,
12
(
8
), pp.
2367
2383
.
2.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: The Role of Biomechanics
,”
J Biomech Eng.
,
122
(
6
), pp.
570
575
.
3.
Lujann
,
T. J.
,
Wirtz
,
K. M.
,
Bahney
,
C. S.
,
Madey
,
S. M.
,
Johnstone
,
B.
, and
Bottlang
,
M.
, 2011, “
A Novel Bioreactor for the Dynamic Stimulation and Mechanical Evaluation of Multiple Tissue-Engineered Constructs
,”
Tissue Eng. Part C Methods
,
17
(
3
), pp.
367
374
.
4.
Langelier
,
E.
,
Rancourt
,
D.
,
Bouchard
,
S.
,
Lord
,
C.
,
Stevens
,
P.
,
Germain
,
L.
, and
Auger
,
F.
, 1999, “
Cyclic Traction Machine for Long-Term Culture of Fibroblast-Populated Collagen Gels
,”
Ann. Biomed. Eng.
,
27
(
1
), pp.
67
72
.
5.
Yamamoto
,
E.
,
Kogawa
,
D.
,
Tokura
,
S.
, and
Hayashi
,
K.
, 2005, “
Effects of the Frequency and Duration of Cyclic Stress on the Mechanical Properties of Cultured Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1168
1175
.
6.
Devkota
,
A. C.
,
Tsuzaki
,
M.
,
Almekinders
,
L. C.
,
Banes
,
A. J.
, and
Weinhold
,
P. S.
, 2007, “
Distributing a Fixed Amount of Cyclic Loading to Tendon Explants Over Longer Periods Induces Greater Cellular and Mechanical Responses
,”
J. Orthop. Res.
,
25
(
8
), pp.
1078
1086
.
7.
Banes
,
A. J.
,
Weinhold
,
P.
,
Yang
,
X.
,
Tsuzaki
,
M.
,
Bynum
,
D.
,
Bottlang
,
M.
, and
Brown
,
T.
, 1999, “
Gap Junctions Regulate Responses of Tendon Cells Ex Vivo to Mechanical Loading
,”
Clin. Orthop. Relat. Res.
,
367
, Suppl, pp.
S356
S370
.
8.
Lavagnino
,
M.
,
Arnoczky
,
S. P.
,
Tian
,
T.
, and
Vaupel
,
Z.
, 2003, “
Effect of Amplitude and Frequency of Cyclic Tensile Strain on the Inhibition of MMP-1 mRNA Expression in Tendon Cells: An in vitro Study
,”
Connect. Tissue Res.
,
44
(
3–4
), pp.
181
187
.
9.
Archambault
,
J. M.
,
Elfervig-Wall
,
M. K.
,
Tsuzaki
,
M.
,
Herzog
,
W.
, and
Banes
,
A. J.
, 2002, “
Rabbit Tendon Cells Produce MMP-3 in Response to Fluid Flow Without Significant Calcium Transients
,”
J. Biomech.
,
35
(
3
), pp.
303
309
.
10.
Scott
,
A.
,
Khan
,
K. M.
,
Heer
,
J.
,
Cook
,
J. L.
,
Lian
,
O.
, and
Duronio
,
V.
, 2005, “
High Strain Mechanical Loading Rapidly Induces Tendon Apoptosis: An Ex Vivo Rat Tibialis Anterior Model
,”
Br. J. Sports Med.
,
39
(
5
), p.
e25
.
11.
Goulet
,
F.
,
Rancourt
,
D.
,
Cloutier
,
R.
,
Tremblay
,
P.
,
Belzil
,
A.
,
Lamontagne
,
J.
,
Bouchard
,
M.
,
Tremblay
,
J.
,
Stevens
,
L.
,
Labrosse
,
J.
,
Langelier
,
E.
, and
McKee
,
M. D.
, 2004, “
Torn ACL: A New Bioengineered Substitute Brought From the Laboratory to the Knee Joint
,”
J. Appl. Biomech.
,
1
(
2
), pp.
115
121
.
12.
Cousineau-Pelletier
,
P.
, and
Langelier
,
E.
, 2010, “
Relative Contributions of Mechanical Degradation, Enzymatic Degradation, and Repair of the Extracellular Matrix on the Response of Tendons When Subjected to Under- and Over-Mechanical Stimulations in vitro
,”
J. Orthop. Res.
,
28
(
2
), pp.
204
210
.
13.
Bruneau
,
A.
,
Champagne
,
C.
,
Cousineau-Pelletier
,
P.
, and
Langelier
,
E.
, 2010, “
Preparation of Rat Tail Tendons for Biomechanical and Mechanobiological Studies
,” J. Vis. Exp.
14.
Parent
,
G.
, and
Langelier
,
E.
, 2011, “
Low Stress Tendon Fatigue Is a Relatively Rapid Process in the Context of Overuse Injuries
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1535
1545
.
15.
Langelier
,
E.
, and
Buschmann
,
M.
, 2003, “
Increasing Strain and Strain Rate Strengthen Transient Stiffness but Weaken the Response to Subsequent Compression for Articular Cartilage in Unconfined Compression
,”
J. Biomech.
,
36
(
6
), pp.
853
859
.
16.
Birch
,
H. L.
,
Wilson
,
A. M.
, and
Goodship
,
A. E.
, 1997, “
The Effect of Exercise-Induced Localised Hyperthermia on Tendon Cell Survival
,”
J. Exp. Biol.
,
200
(
Pt 11
), pp.
1703
1708
.
17.
Wilson
,
A.
, and
Goodship
,
A.
, 1994, “
Exercise-Induced Hyperthermia as a Possible Mechanism for Tendon Degeneration
,”
J. Biomech.
,
27
(
7
), pp.
899
905
.
18.
Xu
,
Y.
, and
Murrell
,
G. A. C
, 2008, “
The Basic Science of Tendinopathy
,”
Clin. Orthop. Relat. Res.
,
466
, pp.
1528
1538
.
19.
Wren
,
T. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
, 2000, “
Tendon and Ligament Adaptation to Exercise, Immobilization, and Remobilization
,”
J. Rehabil. Res. Dev.
,
37
(
2
), pp.
217
224
.
20.
Guilak
,
F.
,
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Mooney
,
D. J.
, 2003,
Functional Tissue Engineering
,
Springer
,
New York
.
21.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
22.
Woo
,
S.
, and
Lee
,
T.
, 2004,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
Lippincott Williams & Wilkins
,
Philadelphia
, pp.
301
342
.
23.
Nordin
,
M.
,
Lorenz
,
T.
, and
Campello
,
M.
, 2001,
Basic Biomechanics of the Musculoskeletal System
,
Lippincott Williams & Wilkins
,
Baltimore
, pp.
102
125
.
24.
McCrum
,
N. G.
,
Buckley
,
C. P.
, and
Bucknall
,
C. B.
, 1997,
Principles of Polymer Engineering
,
Oxford University Press
,
Oxford
, pp.
117
184
.
25.
Liebschner
,
M. A. K.
, 2004, “
Biomechanical Considerations of Animal Models Used in Tissue Engineering of Bone
,”
Biomaterials
,
25
(
9
), pp.
1697
1714
.
26.
Ker
,
R. F.
,
Wang
,
X. T.
, and
Pike
,
A. V.
, 2000, “
Fatigue Quality of Mammalian Tendons
,”
J. Exp. Biol.
,
203
(
Pt 8
), pp.
1317
1327
.
27.
Goodman
,
H. J.
, and
Choueka
,
J.
, 2005, “
Biomechanics of the Flexor Tendons
,”
Hand Clin.
,
21
(
2
), pp.
129
149
.
28.
Chun
,
K.
, and
Hubbard
,
R.
, 2003, “
Tendon Responses Depending on Different Anatomical Locations
,”
J. Mech. Sci. Technol.
,
17
(
7
), pp.
1011
1015
.
29.
Nathan
,
H.
,
Goldgefter
,
L.
,
Kobyliansky
,
E.
,
Goldschmidt-Nathan
,
M.
, and
Morein
,
G.
, 1978, “
Energy Absorbing Capacity of Rat Tail Tendon at Various Ages
,”
J. Anat.
,
127
(
Pt 3
), pp.
589
593
.
30.
Athanasiou
,
K.
,
Zhu
,
C.
,
Wang
,
X.
, and
Agrawal
,
C.
, 2000, “
Effects of Aging and Dietary Restriction on the Structural Integrity of Rat Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
(
2
), pp.
143
149
.
31.
Breault-Janicki
,
M.
,
Small
,
C.
,
Bryant
,
J.
,
Dwosh
,
I.
,
Lee
,
J.
, and
Pichora
,
D.
, 1998, “
Mechanical Properties of Wrist Extensor Tendons Are Altered by the Presence of Rheumatoid Arthritis
,”
J. Orthop. Res.
,
16
(
4
), pp.
472
474
.
32.
Dragoo
,
J. L.
,
Padrez
,
K.
,
Workman
,
R.
, and
Lindsey
,
D. P.
, 2009, “
The Effect of Relaxin on the Female Anterior Cruciate Ligament: Analysis of Mechanical Properties in an Animal Model
,”
Knee
,
16
(
1
), pp.
69
72
.
33.
Leopold
,
S.
,
Boskey
,
A.
,
Doty
,
S.
,
Gertner
,
J.
,
Peterson
,
M.
, and
Torzilli
,
P.
, 1995, “
Diminished Material Properties and Altered Bone Structure in Rat Femora During Pregnancy
,”
J. Orthop. Res.
,
13
(
1
), pp.
41
49
.
34.
Alvarez-Barreto
,
J.
, 2006, “
Tissue Engineering Bioreactors
,”
Tissue Engineering and Artificial Organs
,
Taylor & Francis
,
Boca Raton, FL
, pp.
44.1
44.18
.
35.
Clavert
,
P.
,
Kempf
,
J.
,
Bonnomet
,
F.
,
Boutemy
,
P.
,
Marcelin
,
L.
, and
Kahn
,
J.
, 2001, “
Effects of Freezing/Thawing on the Biomechanical Properties of Human Tendons
,”
Surg. Radiol. Anat.
,
23
(
4
), pp.
259
262
.
36.
Giannini
,
S.
,
Buda
,
R.
,
Di Caprio
,
F.
,
Agati
,
P.
,
Bigi
,
A.
,
De Pasquale
,
V.
, and
Ruggeri
,
A.
, 2008, “
Effects of Freezing on the Biomechanical and Structural Properties of Human Posterior Tibial Tendons
,”
Int. Orthop.
,
32
(
2
), pp.
145
151
.
37.
Ng
,
B.
,
Chou
,
S.
,
Lim
,
B.
, and
Chong
,
A.
, 2005, “
The Changes in the Tensile Properties of Tendons After Freeze Storage in Saline Solution
,”
Proc. Inst. Mech. Eng. H (J. Eng. Med.)
,
219
(
H6
), pp.
387
392
.
38.
Asundi
,
K. R.
,
Kursa
,
K.
,
Lotz
,
J.
, and
Rempel
,
D. M.
, 2007, “
in vitro System for Applying Cyclic Loads to Connective Tissues Under Displacement or Force Control
,”
Ann. Biomed. Eng.
,
35
(
7
), pp.
1188
1195
.
39.
Devkota
,
A. C.
, and
Weinhold
,
P. S.
, 2003, “
Mechanical Response of Tendon Subsequent to Ramp Loading to Varying Strain Limits
,”
Clin. Biomech.
,
18
(
10
), pp.
969
974
.
40.
Joshi
,
S. D.
, and
Webb
,
K.
, 2008, “
Variation of Cyclic Strain Parameters Regulates Development of Elastic Modulus in Fibroblast/Substrate Constructs
,”
J. Orthop. Res.
,
26
(
8
), pp.
1105
1113
.
41.
Ng
,
B.
,
Chou
,
S.
, and
Krishna
,
V.
, 2005, “
The Influence of Gripping Techniques on the Tensile Properties of Tendons
,”
Proc. Inst. Mech. Eng. H (J. Eng. in Med.)
,
219
(
H5
), pp.
349
354
.
42.
Cheung
,
J.
, 2006, “
A Serrated Jaw Clamp for Tendon Gripping
,”
Med. Eng. Phys.
,
28
(
4
), pp.
379
382
.
43.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
, 1981, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
J. Biomech. Eng.
,
103
(
4
), pp.
221
231
.
44.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1985, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
,
3
(
2
), pp.
148
159
.
45.
Chae
,
Y.
,
Aguilar
,
G.
,
Lavernia
,
E. J.
, and
Wong
,
B. J.
, 2003, “
Characterization of Temperature Dependent Mechanical Behavior of Cartilage
,”
Lasers Surg. Med.
,
32
(
4
), pp.
271
278
.
46.
Lam
,
T.
,
Thomas
,
C.
,
Shrive
,
N.
,
Frank
,
C.
, and
Sabiston
,
C.
, 1990, “
The Effects of Temperature on the Viscoelastic Properties of the Rabbit Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
147
152
.
47.
Woo
,
S.
,
Lee
,
T.
,
Gomez
,
M.
,
Sato
,
S.
, and
Field
,
F.
, 1987, “
Temperature Dependent Behavior of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
109
(
1
), pp.
68
71
.
48.
Hoffman
,
A. H.
,
Robichaud
,
D. R.
,
Duquette
,
J. J.
, and
Grigg
,
P.
, 2005, “
Determining the Effect of Hydration Upon the Properties of Ligaments Using Pseudo Gaussian Stress Stimuli
,”
J. Biomech.
,
38
(
8
), pp.
1636
1642
.
49.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2001, “
Altering Ligament Water Content Affects Ligament Pre-stress and Creep Behaviour
,”
J. Orthop. Res.
,
19
(
5
), pp.
845
851
.
50.
Bian
,
L.
,
Fong
,
J. V.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Ateshian
,
G. A.
,
Cook
,
J. L.
, and
Hung
,
C. T.
, 2010, “
Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes
,”
Tissue Eng. A
,
16
(
5
), pp.
1781
1790
.
51.
Breen
,
L. T.
,
McHugh
,
P. E.
, and
Murphy
,
B. P.
, 2009, “
Multi-axial Mechanical Stimulation of HUVECs Demonstrates That Combined Loading Is Not Equivalent to the Superposition of Individual Wall Shear Stress and Tensile Hoop Stress Components
,”
ASME J. Biomech. Eng.
,
131
(
8
), p.
081001
.
52.
Moreau
,
J. E.
,
Bramono
,
D. S.
,
Horan
,
R. L.
,
Kaplan
,
D. L.
, and
Altman
,
G. H.
, 2008, “
Sequential Biochemical and Mechanical Stimulation in the Development of Tissue-Engineered Ligaments
,”
Tissue Eng. A.
,
14
(
7
), pp.
1161
1172
.
53.
Wang
,
C.
,
Cen
,
L.
,
Yin
,
S.
,
Liu
,
Q.
,
Liu
,
W.
,
Cao
,
Y.
, and
Cui
,
L.
, 2010, “
A Small Diameter Elastic Blood Vessel Wall Prepared Under Pulsatile Conditions From Polyglycolic Acid Mesh and Smooth Muscle Cells Differentiated From Adipose-Derived Stem Cells
,”
Biomaterials
,
31
(
4
), pp.
621
630
.
54.
Mekid
,
S.
, 2008,
Introduction to Precision Machine Design and Error Assessment
,
CRC
,
Boca Raton, FL
.
55.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M.
,
Wetzels
,
S.
, and
Pril
,
W.
, 1998, “
Design for Precision: Current Status and Trends
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
557
586
.
56.
Ratcliffe
,
A.
, and
Niklason
,
L. E.
, 2002, “
Bioreactors and Bioprocessing for Tissue Engineering
,”
Ann. N. Y. Acad. Sci.
,
961
, pp.
210
215
.
57.
Couet
,
F.
, and
Mantovani
,
D.
, 2010, “
How to Optimize Maturation in a Bioreactor for Vascular Tissue Engineering: Focus on a Decision Algorithm for Experimental Planning
,”
Ann. Biomed. Eng.
,
28
(
9
), pp.
2877
2884
.
58.
Martin
,
I.
,
Wendt
,
D.
, and
Heberer
,
M.
, 2004, “
The Role of Bioreactors in Tissue Engineering
,”
Trends Biotechnol.
,
22
(
2
), pp.
80
86
.
You do not currently have access to this content.