Abstract

Flow-induce motions (FIM) small-scale model tests were performed for the Jappaku floating offshore wind turbines (JPK), a FOWT developed to operate in Brazilian waters. This paper aims to investigate the presence of FIM on the JPK to show the importance of heave plate (HP) design and to show how HP mitigates FIM. Three different HP dimensions were tested and compared with the condition without HP. In addition, two different incidence angles of the current were tested, namely, 0 deg and 180 deg. The results showed amplitudes in the transverse direction similar to the diameter of the external platform column for the case without HP. These amplitudes are higher than the ones observed for previous deep-draft semi-submersibles found in the literature. Conversely, the largest HP dimensions implied in mitigation of the FIM amplitudes, i.e., very low amplitudes, were observed. The presence of the central column played an essential role in FIM and significantly modified the amplitudes in different current incidences. Due to the different diameters of the external and central columns, the FIM presented two different branches of response related to the vortex-shedding frequency around the columns. The results showed that significant FIM could occur for this specific JPK investigation even with HP. The HP design has a positive effect on reducing dynamic behaviors due to the wave and current incidences. Therefore, its design must be included in the preliminary stages of FOWT developments.

References

1.
Blevins
,
R. D.
,
2001
,
Flow-Induced Vibration
, 2nd ed.,
Krieger Publishing Company
,
Malabar, FL
, pp.
104
152
.
2.
Zhao
,
J.
,
Leontini
,
J. S.
,
Jacono
,
D. L.
, and
Sheridan
,
J.
,
2014
, “
Fluid–Structure Interaction of a Square Cylinder at Different Angles of Attack
,”
J. Fluid Mech.
,
747
, pp.
688
721
.
3.
Yin
,
D.
,
Passano
,
E.
,
Jiang
,
F.
,
Lie
,
H.
,
Wu
,
J.
,
Ye
,
N.
,
Sævik
,
S.
, and
Leira
,
B. J.
,
2022
, “
State-of-Art Review of Vortex-Induced Motions of Floating Offshore Wind Turbine Structures
,”
J. Mar. Sci. Eng.
,
10
(
8
), p.
1021
.
4.
Chen
,
J.
, and
Kim
,
C.-H.
,
2022
, “
Review of Recent Offshore Wind Turbine Research and Optimization Methodologies in Their Design
,”
J. Mar. Sci. Eng.
,
10
(
1
), p.
28
.
5.
Liu
,
Y.
,
Li
,
S.
,
Yi
,
Q.
, and
Chen
,
D.
,
2016a
, “
Developments in Semi-Submersible Floating Foundations Supporting Wind Turbines: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
433
449
.
6.
Lemmer
,
F.
,
Yu
,
W.
, and
Cheng
,
P. W.
,
2018
, “
Iterative Frequency-Domain Response of Floating Offshore Wind Turbines With Parametric Drag
,”
J. Mar. Sci. Eng.
,
6
(
4
), p.
118
.
7.
Suzuki
,
H.
,
Xiong
,
J.
,
do Carmo
,
L. H. S.
,
Vieira
,
D. P.
,
de Mello
,
P. C.
,
Malta
,
E. B.
,
Simos
,
A. N.
,
Hirabayashi
,
S.
, and
Gonçalves
,
R. T.
,
2019
, “
Elastic Response of a Light-Weight Floating Support Structure of FOWT With Guywire Supported Tower
,”
J. Mar. Sci. Technol.
,
24
(
4
), pp.
1015
1028
.
8.
Mello
,
P. C.
,
Malta
,
E. B.
,
da Silva
,
R. O. P.
,
Candido
,
M. H. O.
,
do Carmo
,
L. H. S.
,
Alberto
,
I. F.
,
Franzini
,
G. R.
,
Simos
,
A. N.
,
Suzuki
,
H.
, and
Gonçalves
,
R. T.
,
2021
, “
Influence of Heave Plates on the Dynamics of a Floating Offshore Wind Turbine in Waves
,”
J. Mar. Sci. Technol.
,
26
(
1
), pp.
190
200
.
9.
Carlson
,
D. W.
, and
Modarres-Sadeghi
,
Y.
,
2017
, “
Vortex-Induced Vibration of Spar Platforms for Floating Offshore Wind Turbines
,”
Wind Energy
,
21
(
11
), pp.
1169
1176
.
10.
Gonçalves
,
R. T.
,
Chame
,
M. E. F.
,
Silva
,
L. S. P.
,
Koop
,
A.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2021
, “
Experimental Flow-Induced Motions (FIM) of a FOWT Semi-submersible Type (OC4 Phase II Floater)
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), p.
012004
.
11.
Robertson
,
A.
,
Jonkman
,
J.
,
Masciola
,
M.
,
Goupee
,
A.
,
Coulling
,
A.
, and
Luan
,
C.
,
2014
, “Definition of the Semi-submersible Floating System for Phase II of OC4,” Technical Report No. NREL/TP-5000-60601, National Renewable Energy Lab. (NREL).
12.
Lopez-Pavon
,
C.
, and
Souto-Iglesias
,
A.
,
2015
, “
Hydrodynamic Coefficients and Pressure Loads on Heave Plates for Semi-submersible Floating Offshore Wind Turbines: A Comparative Analysis Using Large Scale Models
,”
Renewable Energy
,
81
, pp.
864
881
.
13.
Thiagarajan
,
K.
, and
Moreno
,
J.
,
2020
, “
Wave Induced Effects on the Hydrodynamic Coefficients of an Oscillating Heave Plate in Offshore Wind Turbines
,”
J. Mar. Sci. Eng
,
8
(
8
), p.
622
.
14.
Jiang
,
Y.
,
Hu
,
G.
,
Zong
,
Z.
,
Zou
,
L.
, and
Jin
,
G.
,
2020
, “
Influence of an Integral Heave Plate on the Dynamic Response of Floating Offshore Wind Turbine Under Operational and Storm Conditions
,”
Energies
,
13
(
22
), p.
6122
.
15.
Takata
,
T.
,
Takaoka
,
M.
,
Houtani
,
H.
,
Hara
,
K.
,
Oh
,
S.
,
Malta
,
E. B.
,
Iijima
,
K.
,
Suzuki
,
H.
, and
Gonçalves
,
R. T.
,
2022
, “
Effect of Heave Plates on the Wave Motion of a Flexible Multicolumn FOWT
,”
Energies
,
15
, p.
7605
.
16.
Kosasih
,
M. A.
,
Suzuki
,
H.
,
Niizato
,
H.
, and
Okubo
,
S.
,
2020
, “
Demonstration Experiment and Numerical Simulation Analysis of Full-Scale Barge-Type Floating Offshore Wind Turbine
,”
J. Mar. Sci. Eng.
,
8
(
11
), p.
880
.
17.
Gonçalves
,
R. T.
,
Silva
,
R. O. P.
,
Marques
,
M. A.
,
Hirabayashi
,
S.
,
Assi
,
G. R. S.
,
Simos
,
A. N.
, and
Suzuki
,
H.
,
2020
, “
Experimental Study on Vortex-Induced Motions of Floating Circular Single Cylinders With Low Aspect Ratio and Different Heave Plate Geometries
,”
Proceedings of the 30th International Ocean and Polar Engineering Conference
,
Shanghai, China
,
Aug. 3–7
.
18.
Pesce
,
C. P.
,
Amaral
,
G. A.
, and
Franzini
,
G. R.
,
2018
, “
Mooring System Stiffness: A General Analytical Formulation with an Application to Floating Offshore Wind Turbines
,”
Proceedings of the ASME 1st International Offshore Wind Technical Conference, IOWTC2018-1040
,
San Francisco, CA
,
Nov. 4–7
.
19.
Assi
,
G. R. S.
,
2014
, “
Wake-Induced Vibration of Tandem Cylinders of Different Diameters
,”
J. Fluids Struct.
,
50
, pp.
329
339
.
20.
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2018d
, “
Vortex-Induced Vibration of Floating Circular Cylinders With Very Low Aspect Ratio
,”
Ocean Eng.
,
154
, pp.
234
251
.
21.
Gonçalves
,
R. T.
,
Hannes
,
N. H.
,
Chame
,
M. E. F.
,
Lopes
,
P. P. S. P.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2020
, “
FIM—Flow-Induced Motions of Four-Column Platforms
,”
Appl. Ocean Res.
,
95
, p.
102019
.
22.
Gonçalves
,
R. T.
,
Chame
,
M. E. F.
,
Hannes
,
N. H.
,
Lopes
,
P. P. S. P.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2020
, “
FIM—Flow-Induced Motion of Three-Column Platforms
,”
Int. J. Offshore Polar Eng.
,
30
(
2
), pp.
177
185
.
You do not currently have access to this content.