Abstract

Accurate surface wave prediction can potentially improve the safety and efficiency of various offshore operations, such as heavy lifts and active control of wave energy converters and floating wind turbines. Prediction of surface waves, even if only for a few periods in advance, is of value for decision-making. This study aims to predict weakly nonlinear surface waves (up to the second-order) in real-time using a data-driven model based on artificial neural networks (ANNs), where the application of physics is investigated to aid the development of a data-driven model. Based on numerically synthesized nonlinear wave records calculated using exact second-order theory, ANN models were trained to separate the nonlinear bound components at an up-wave location, propagate the linear waves, and reintroduce the nonlinear components as a correction to the prediction at a down-wave location. Our findings indicate that the optimal approach is to predict each stage separately following the basic physical structure of weakly nonlinear water waves using a series of ANN rather than direct prediction in a single step using ANN. Furthermore, we examined the generalization of the models across different sea states and investigated the impact of the second-order bound waves on prediction accuracy.

References

1.
Naaijen
,
P.
, and
Blondel-Couprie
,
E.
,
2012
, “
Wave Induced Motion Prediction as Operational Decision Support for Offshore Operations
,”
Proceedings of the International Conference Marine Heavy Transport & Lift, Vol. 3
,
Rio de Janeiro, Brazil
,
July 1–6
, Vol. 3, pp.
24
25
.
2.
Zhao
,
W.
,
Yang
,
J.
,
Hu
,
Z.
, and
Tao
,
L.
,
2014
, “
Prediction of Hydrodynamic Performance of an FLNG System in Side-by-Side Offloading Operation
,”
J. Fluids Struct.
,
46
, pp.
89
110
.
3.
Hals
,
J.
,
Bjarte-Larsson
,
T.
, and
Falnes
,
J.
,
2002
, “
Optimum Reactive Control and Control by Latching of a Wave-Absorbing Semisubmerged Heaving Sphere
,”
International Conference on Offshore Mechanics and Arctic Engineering, Vol. 36142
,
Oslo, Norway
,
June 23–28
, pp.
415
423
.
4.
Salic
,
T.
,
Charpentier
,
J. F.
,
Benbouzid
,
M.
, and
Le Boulluec
,
M.
,
2019
, “
Control Strategies for Floating Offshore Wind Turbine: Challenges and Trends
,”
Electronics
,
8
(
10
), p.
1185
.
5.
Chen
,
J.
,
Milne
,
I.
,
Taylor
,
P. H.
,
Gunawan
,
D.
, and
Zhao
,
W.
,
2023
, “
Forward Prediction of Surface Wave Elevations and Motions of Offshore Floating Structures Using a Data-Driven Model
,”
Ocean Eng.
,
281
, p.
114680
.
6.
Falnes
,
J.
,
2001
, “
Optimum Control of Oscillation of Wave-Energy Converters
,”
The Eleventh International Offshore and Polar Engineering Conference, Vol. 12
,
Stavanger, Norway
,
June 17–22
, pp.
147
155
.
7.
Henriques
,
J. C. C.
,
Gato
,
L. M. C.
,
Falcão
,
A. F. D. O.
,
Robles
,
E.
, and
Faÿ
,
F.-X.
,
2016
, “
Latching Control of a Floating Oscillating-Water-Column Wave Energy Converter
,”
Renew. Energy
,
90
, pp.
229
241
.
8.
Cheng
,
Y.
,
Fu
,
L.
,
Dai
,
S.
,
Collu
,
M.
,
Ji
,
C.
,
Yuan
,
Z.
, and
Incecik
,
A.
,
2022
, “
Experimental and Numerical Investigation of WEC-Type Floating Breakwaters: A Single-Pontoon Oscillating Buoy and a Dual-Pontoon Oscillating Water Column
,”
Coastal Eng.
,
177
, p.
104188
.
9.
Cheng
,
Y.
,
Fu
,
L.
,
Dai
,
S.
,
Collu
,
M.
,
Cui
,
L.
,
Yuan
,
Z.
, and
Incecik
,
A.
,
2022
, “
Experimental and Numerical Analysis of a Hybrid WEC-Breakwater System Combining an Oscillating Water Column and an Oscillating Buoy
,”
Renew. Sustain. Energy Rev.
,
169
, p.
112909
.
10.
Morris
,
E.
,
Zienkiewicz
,
H.
, and
Belmont
,
M.
,
1998
, “
Short Term Forecasting of the Sea Surface Shape
,”
Int. Shipbuild. Prog.
,
45
(
444
), pp.
383
400
.
11.
Toffoli
,
A.
,
Onorato
,
M.
,
Bitner-Gregersen
,
E.
,
Osborne
,
A. R.
, and
Babanin
,
A. V.
,
2008
, “
Surface Gravity Waves From Direct Numerical Simulations of the Euler Equations: A Comparison With Second-Order Theory
,”
Ocean Eng.
,
35
(
3–4
), pp.
367
379
.
12.
Wu
,
G.
,
2004
, “
Direct Simulation and Deterministic Prediction of Large-Scale Nonlinear Ocean Wave-Field
,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
13.
Blondel-Couprie
,
E.
,
Bonnefoy
,
F.
, and
Ferrant
,
P.
,
2013
, “
Experimental Validation of Non-Linear Deterministic Prediction Schemes for Long-Crested Waves
,”
Ocean Eng.
,
58
, pp.
284
292
.
14.
Dommermuth
,
D. G.
, and
Yue
,
D. K.
,
1987
, “
A High-Order Spectral Method for the Study of Nonlinear Gravity Waves
,”
J. Fluid Mech.
,
184
, pp.
267
288
.
15.
West
,
B. J.
,
Brueckner
,
K. A.
,
Janda
,
R. S.
,
Milder
,
D. M.
, and
Milton
,
R. L.
,
1987
, “
A New Numerical Method for Surface Hydrodynamics
,”
J. Geophys. Res. Oceans
,
92
(
C11
), pp.
11803
11824
.
16.
Trulsen
,
K.
, and
Stansberg
,
C. T.
,
2001
, “
Spatial Evolution of Water Surface Waves: Numerical Simulation and Experiment of Bichromatic Waves
,”
The Eleventh International Offshore and Polar Engineering Conference, Vol. 12
,
Stavanger, Norway
,
June 17–22
.
17.
Simanesew
,
A.
,
Trulsen
,
K.
,
Krogstad
,
H. E.
, and
Borge
,
J. C. N.
,
2017
, “
Surface Wave Predictions in Weakly Nonlinear Directional Seas
,”
Appl. Ocean Res.
,
65
, pp.
79
89
.
18.
Hlophe
,
T.
,
Wolgamot
,
H.
,
Kurniawan
,
A.
,
Taylor
,
P. H.
,
Orszaghova
,
J.
, and
Draper
,
S.
,
2021
, “
Fast Wave-by-Wave Prediction of Weakly Nonlinear Unidirectional Wave Fields
,”
Appl. Ocean Res.
,
112
, p.
102695
.
19.
Hlophe
,
T.
,
Wolgamot
,
H.
,
Taylor
,
P. H.
,
Kurniawan
,
A.
,
Orszaghova
,
J.
, and
Draper
,
S.
,
2022
, “
Wave-by-Wave Prediction in Weakly Nonlinear and Narrowly Spread Seas Using Fixed-Point Surface-Elevation Time Histories
,”
Appl. Ocean Res.
,
122
, p.
103112
.
20.
Law
,
Y.
,
Santo
,
H.
,
Lim
,
K.
, and
Chan
,
E.
,
2020
, “
Deterministic Wave Prediction for Unidirectional Sea-States in Real-Time Using Artificial Neural Network
,”
Ocean Eng.
,
195
, p.
106722
.
21.
Chen
,
J.
,
Hlophe
,
T.
,
Zhao
,
W.
,
Milne
,
I.
,
Gunawan
,
D.
,
Kurniawan
,
A.
,
Wolgamot
,
H.
,
Taylor
,
P.
, and
Orszaghova
,
J.
,
2023
, “
Comparison of Physics-Based and Machine Learning Methods for Phase-Resolved Prediction of Waves Measured in the Field
,”
15th European Wave and Tidal Energy Conference 2023
,
Bilbao, Spain
,
Sept. 3–7
, pp.
1
9
.
22.
Chen
,
J.
,
Taylor
,
P. H.
,
Milne
,
I. A.
,
Gunawan
,
D.
, and
Zhao
,
W.
,
2023
, “
Wave-by-Wave Prediction for Spread Seas Using a Machine Learning Model With Physical Understanding
,”
Ocean Eng.
,
285
, p.
115450
.
23.
Dalzell
,
J.
,
1999
, “
A Note on Finite Depth Second-Order Wave–Wave Interactions
,”
Appl. Ocean Res.
,
21
(
3
), pp.
105
111
.
24.
Forristall
,
G. Z.
,
2000
, “
Wave Crest Distributions: Observations and Second-Order Theory
,”
J. Phys. Oceanogr.
,
30
(
8
), pp.
1931
1943
.
25.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Enke
,
K.
,
Ewing
,
J.
, et al.,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,” Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A.
26.
Janas
,
K.
,
Milne
,
I.
, and
Whelan
,
J.
,
2021
, “
Application of a Convolutional Neural Network for Mooring Failure Identification
,”
Ocean Eng.
,
232
, p.
109119
.
27.
Sola
,
J.
, and
Sevilla
,
J.
,
1997
, “
Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems
,”
IEEE Trans. Nucl. Sci.
,
44
(
3
), pp.
1464
1468
.
28.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
29.
Walker
,
D. A.
,
Taylor
,
P. H.
, and
Taylor
,
R. E.
,
2004
, “
The Shape of Large Surface Waves on the Open Sea and the Draupner New Year Wave
,”
Appl. Ocean Res.
,
26
(
3–4
), pp.
73
83
.
30.
Mei
,
C. C.
,
Stiassnie
,
M. A.
, and
Yue
,
D. K.-P.
,
2005
,
Theory and Applications of Ocean Surface Waves: Part 1: Linear Aspects
,
World Scientific
,
Singapore
.
31.
Chollet
,
F.
,
2015
, “
Keras: Deep Learning Library for Theano and Tensorflow
,” https://github.com/fchollet/keras
32.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” https://www.tensorflow.org/
You do not currently have access to this content.