Thick-walled cylinders such as gun barrels, high pressure containers, and rocket shells are designed to withstand high pressure. The cylinder material may crack if the induced pressure exceeds the material yield strength. Therefore, the thick-walled cylinders are autofrettaged in order to withstand very high pressure in service condition. The most commonly practiced autofrettage processes are hydraulic autofrettage and swage autofrettage. Hydraulic autofrettage involves very high internal pressure at the bore of the cylinder, and in swage autofrettage an oversized mandrel is pushed through the cylinder bore to cause the plastic deformation of the inner wall of the cylinder leaving the outer wall at the elastic state. This results in compressive residual stresses at and around the inner wall of the cylinder, which reduces the maximum stress in the cylinder during next stage of loading by pressurization. Both the processes are well established, but still there are certain disadvantages associated with the processes. The present work proposes a novel method of autofrettage for increasing the pressure carrying capacity of thick-walled cylinders. The method involves only radial temperature gradient in the cylinder for achieving autofrettage. The proposed process is analyzed theoretically for thick-walled cylinders with free ends. The numerical simulations of the process for typical cases and preliminary experiments show encouraging results for the feasibility of the proposed autofrettage process.

References

1.
Rogan
,
J.
,
1975
, “
Fatigue Strength and Mode of Fracture of High Pressure Tubing Made From Low-Alloy High Strength Steels
,”
High Pressure Engineering
,
IMech. E
,
London, UK
, pp.
287
295
.
2.
Perl
,
M.
, and
Arone
,
R.
,
1988
, “
Stress Intensity Factors for a Radial Multi-Jacketed Partially Autofrettaged Pressurized Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
110
(2), pp.
147
154
.10.1115/1.3265579
3.
Parker
,
A. P.
, and
Kendall
,
D. P.
,
2003
, “
Residual Stresses and Lifetimes of Tubes Subjected to Shrink Fit Prior to Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
282
286
.10.1115/1.1593074
4.
Malik
,
M. A.
, and
Khushnood
,
S.
,
2003
, “
A Review of Swage-Autofrettage Process
,”
Proceedings of the 11th International Conference on Nuclear Engineering
, Tokyo, Japan, Apr. 20–23, pp.
1
12
.
5.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.10.1007/BF02325691
6.
Mote
,
J. D.
,
Ching
,
L. K. W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,” Army Materials and Mechanics Research Center, Watertown, MA, No. AMMRC CR 70-25.
7.
Ezra
,
A. A.
,
1973
, “
Method and Apparatus for Explosive Autofrettage
,” U.S. Patent No. 3,751,954.
8.
Taylor
,
D. J.
,
Watkins
,
T. R.
,
Hubbard
,
C. R.
,
Hill
,
M. R.
, and
Meith
,
W. A.
,
2012
,”
Residual Stress Measurements of Explosive Clad Cylindrical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011501
.10.1115/1.4004615
9.
Hill
,
R.
,
Lee
,
E. H.
, and
Tupper
,
S. J.
,
1947
, “
The Theory of Combined Plastic and Elastic Deformation With Particular Reference to a Thick Tube Under Internal Pressure
,”
Proc. R. Soc. London, Ser. A
,
191
(1026), pp.
278
303
.10.1098/rspa.1947.0116
10.
Thomas
,
D. G. B.
,
1953
, “
The Autofrettage of Thick Tubes With Free Ends
,”
J. Mech. Phys. Solids
,
1
(
2
), pp.
124
133
.10.1016/0022-5096(53)90016-7
11.
Avitzur
,
B.
,
1994
, “
Autofrettage—Stress Distribution Under Load and Retained Stresses After Depressurization
,”
Int. J. Pressure Vessel Piping
,
57
(
3
), pp.
271
287
.10.1016/0308-0161(94)90031-0
12.
Rees
,
D. W. A.
,
1987
, “
A Theory of Autofrettage With Applications to Creep and Fatigue
,”
Int. J. Pressure Vessel Piping
,
30
(
1
), pp.
57
76
.10.1016/0308-0161(87)90093-7
13.
Huang
,
X. P.
, and
Cui
,
W. C.
,
2006
, “
Effect of Bauschinger Effect and Yield Criterion on Residual Stress Distribution of Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
212
216
.10.1115/1.2172621
14.
Gibson
,
M. C.
,
Hameed
,
A.
,
Parker
,
A. P.
, and
Hetherington
,
J. G.
,
2006
, “
A Comparison of Methods for Predicting Residual Stresses in Strain-Hardening, Autofrettaged Thick Cylinders, Including the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
217
222
.10.1115/1.2172964
15.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic–Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.10.1115/1.2842303
16.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open End Tubes—Pressures, Stresses, Strains and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
17.
ASME Pressure Vessel and Piping Design Code
,
1997
, “
Design Using Autofrettage
,” Division 3, Section 8, Article KD-5, pp.
71
73
.
18.
ASME Boiler and Pressure Vessel Code, 2004 onwards, Section VIII, Division 3, Article KD-510–530, pp. 104–105.
19.
Majzoobi
,
G. H.
,
Farrahi
,
G. H.
, and
Mahmoudi
,
A. H.
,
2003
, “
A Finite Element Simulation and an Experimental Study of Autofrettage for Strain Hardened Thick-Walled Cylinders
,”
Mater. Sci. Eng., A
,
359
(
1–2
), pp.
326
331
.10.1016/S0921-5093(03)00398-8
20.
Hojjati
,
M. H.
, and
Hassani
,
A.
,
2007
, “
Theoretical and Finite Element Modeling of Autofrettage Process in Strain Hardening Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
310
319
.10.1016/j.ijpvp.2006.10.004
21.
Ali
,
A. R. M.
,
Ghosh
,
N. C.
, and
Alam
,
T. E.
,
2010
, “
Optimum Design of Pressure Vessel Subjected to Autofrettage Process
,”
World Acad. Sci. Eng. Technol.
,
46
, pp.
667
672
. Available at: www.waset.org/Publication/14740
22.
Perry
,
J.
, and
Aboudi
,
J.
,
2003
, “
Elasto-Plastic Stresses in Thick Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
248
252
.10.1115/1.1593078
23.
Chen
,
P. C. T.
,
1988
, “
A Simple Analysis of the Swage Autofrettage Process
,”
Transactions of the Fifth Army Conference on Applied Mathematics and Computing
, Research Triangle Park, NC, ARO Report No. 88-1, pp.
149
159
.
24.
Iremonger
,
M. J.
, and
Kalsi
,
G. S.
,
2003
, “
A Numerical Study of Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
347
351
.10.1115/1.1593073
25.
Chen
,
P. C. T.
,
1988
, “
Finite Element Analysis of the Swage Autofrettage Process
,” U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY, Technical Report No. ARCCB-TR-88037.
26.
O'Hara
,
G. P.
,
1992
, “
Analysis of the Swage Autofrettage Process
,” U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY, Technical Report No. ARCCB-TR-92016.
27.
Bihamta
,
R.
,
Movahhedy
,
M. R.
, and
Mashreghi
,
A. R.
,
2007
, “
A Numerical Study of Swage Autofrettage of Thick-Walled Tubes
,”
Mater. Des.
,
28
(
3
), pp.
804
815
.10.1016/j.matdes.2005.11.012
28.
Perry
,
J.
, and
Perl
,
M.
,
2008
, “
A 3-D Model for Evaluating the Residual Stress Field Due to Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
041211
.10.1115/1.2967741
29.
Orçan
,
Y.
,
1994
, “
Thermal Stresses in a Heat Generating Elastic–Plastic Cylinder With Free Ends
,”
Int. J. Eng. Sci.
,
32
(
6
), pp.
883
898
.10.1016/0020-7225(94)90043-4
30.
Chakrabarty
,
J.
,
2006
,
Theory of Plasticity
, 3rd ed.,
Butterworth-Heinemann
,
Burlington, Canada
.
31.
Durban
,
D.
,
1987
, “
An Exact Solution for the Internally Pressurized, Elastoplastic, Strain-Hardening, Annular Plate
,”
Acta Mech.
,
66
(
1–4
), pp.
111
128
.10.1007/BF01184288
32.
Masri
,
R.
,
Cohen
,
T.
, and
Durban
,
D.
,
2010
, “
Enlargement of a Circular Hole in a Thin Plastic Sheet: Taylor–Bethe Controversy in Retrospect
,”
Q. J. Mech. Appl. Math.
,
63
(
4
), pp.
589
616
.10.1093/qjmam/hbq013
33.
Noda
,
N.
,
Hetnarski
,
R. B.
, and
Tanigawa
,
Y.
,
2003
,
Thermal Stresses
, 2nd ed.,
Taylor and Francis
,
New York
.
34.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
35.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
, New Delhi,
India
.
36.
Durban
,
D.
,
1981
, “
Thermoplastic Behavior of a Thick-Walled Sphere
,”
AIAA J.
,
19
(
6
), pp.
826
828
.10.2514/3.7825
37.
Durban
,
D.
,
1983
, “
Thermo-Elastic/Plastic Behaviour of a Strain-Hardening Thick-Walled Sphere
,”
Int. J. Solids Struct.
,
19
(
7
), pp.
643
652
.10.1016/0020-7683(83)90017-3
38.
Tosha
,
K
.,
2002
, “
Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening
,”
Proceedings of the Second Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology
, Seoul, Korea, July, pp.
48
54
.
39.
Parker
,
A. P.
,
Underwood
,
J. H.
,
Throop
,
J. F.
, and
Andrasic
,
C. P.
,
1983
, “
Stress Intensity and Fatigue Crack Growth in a Pressurized, Autofrettaged Thick Cylinder
,”
American Society for Testing and Materials 14th National Symposium on Fracture Mechanics
, UCLA, Paper No. ASTM STP 791, pp.
216
237
.
You do not currently have access to this content.