Q345R steel is the most commonly used material in fabrication of the pressure vessels and boilers in China, due to its excellent properties. In 2010, ASME code case 2642 accepted Q345R steel for use in construction of pressure vessels. The code case specified impact test exemption curve A for the impact test requirements for Q345R. However, this provision severely limits the application of this material at low temperature, since most of the minimum design metal temperature (MDMT) of curve A is above the freezing point. In this paper, a series of tests (such as uniaxial tensile test, impact test, and fracture toughness test) were carried out at low temperature to investigate the mechanical properties of Q345R steel plates with thickness of 36–80 mm. This study of low temperature usage of Q345R steel was conducted using the fracture mechanics assessment procedure of API 579-1/ASME FFS-1. The fracture toughness is given by master curve (MC) method in the transition regime. The results show that Q345R can be used at lower temperature and that classifying Q345R steel into curve D is appropriate.

References

1.
ASME
,
2007
,
Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York
.
2.
Osage
,
D. A.
,
2007
, “
ASME Section VIII—Division 2 Criteria and Commentary
,” ASME PTB-1 2007, ASME, New York.
3.
Farr
,
J. R.
, and
Jawad
,
M. H.
,
2001
,
Guide Book for the Design of ASME VIII Section Pressure Vessels
, 2nd ed.,
ASME Press
,
New York
, pp.
15
20
.
4.
Selz
,
A.
,
1988
, “
New Toughness Rules in Section VIII, Division 1 of the ASME Boiler and Pressure Code
,” 88-PVP-8, ASME, New York.
5.
Osage
,
D. A.
, and
Prager
,
M.
,
2012
, “
Technical Basis of Material Toughness Requirements in the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2
,”
ASME J. Pressure Vessel Technol.
,
134
(
3
), p.
031001
.
6.
Prager
,
M.
,
Osage
,
D. A.
,
Staats
,
J.
, and
Macejko
,
B.
,
2010
,
Development of Material Fracture Toughness Rules for the ASME B&PV Code, Section VIII, Division 2
(WRC Bulletin, Vol. 528),
The Welding Research Council
,
New York
.
7.
Prager
,
M.
,
2007
,
Impact Testing Exemption Curves for Low Temperature Operation of Pressure Piping
,
Pressure Vessel Research Council
,
New York
.
8.
Antalffy
,
L. P.
,
Hajovsky
,
J. J.
,
Miller
, III,
G. A.
,
Millet
,
B. J.
,
Pfeifer
,
J. A.
, and
West
,
G. T.
,
2006
,
Comparison of Pressure Vessel Codes ASME Section VIII and EN13445
,
ASME Standard Technology
,
New York
.
9.
ASME
,
2005
,
Code Case 2506-1
,
American Society of Mechanical Engineers
,
New York
.
10.
ASME
,
2010
,
Code Case 2642
,
American Society of Mechanical Engineers
,
New York
.
11.
Jiangyang
,
Q.
,
Yinpei
,
W.
, and
Zengdian
,
L.
,
2000
, “
Brittle–Ductile Transition Temperature Characterization Elastic–Plastic Fracture Toughness Ji of 16MnR Steel
,”
Phys. Test. Chem. Anal., Part A
,
36
(
12
), pp.
531
534
.
12.
Jiangyang
,
Q.
,
Yinpei
,
W.
,
Zengdian
,
L.
, and
Jin
,
C.
,
2000
, “
Fracture Toughness and Minimum Usage Temperature of the Spherical Vessel Steel
,”
China Pet. Mach.
,
28
(
3
), pp.
18
20
.
13.
API 579-1/ASME FFS-1
,
2007
,
Fitness-For-Service
,
American Society of Mechanical Engineers
,
New York
.
14.
ASTM E23
,
2007
,
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
15.
ASTM E1921
,
2012
,
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,
ASTM International
,
West Conshohocken, PA
.
16.
Sailors
,
R. H.
, and
Corten
,
T. H.
,
1972
, “
Relationship Between Material Fracture Toughness Using Fracture Mechanics and Transition Temperature Tests
,” National Symposium Fracture Mechanics, ASTM STP 514,
American Society for Testing and Materials
, pp.
164
191
.
17.
Barsom
,
J. M.
, and
Rolfe
,
S. T.
,
1970
, “
Correlations Between KIC and Charpy V-Notch Test Results in the Transition-Temperature Range
,”
Impact Testing of Metals: STP 466
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
281
302
.
18.
Wallin
,
K.
,
Saario
,
T.
,
Törrönen
,
K.
, and
Forsten
,
J.
,
1984
, “
Mechanism-Based Statistical Evaluation of the ASME Reference Fracture Toughness Curve
,”
5th International Conference on Pressure Vessel Technology
, San Francisco, CA, Sept. 9–14, pp. 966–974.
19.
Wallin
,
K.
,
1984
, “
The Scatter in KIC Results
,”
Eng. Fract. Mech.
,
19
(
6
), pp.
1085
1093
.
20.
Wallin
,
K.
,
1985
, “
The Size Effect in KIC Results
,”
Eng. Fract. Mech.
,
22
(
1
), pp.
149
163
.
21.
Wallin
,
K.
,
1999
, “
Statistical Re-Evaluation of the ASME KIC and KIR Fracture Toughness Reference Curves
,”
Nucl. Eng. Des.
,
193
(
3
), pp.
317
326
.
22.
IAEA
,
2005
, “
Guidelines for Application of the Master Curve Approach to Reactor Pressure Vessel Integrity in Nuclear Power Plants
,” International Atomic Energy Agency, Vienna, Austria, Technical Report No. N629.
23.
BS7910
,
2005
,
Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structure
,
British Standards Institution
,
London, UK
.
24.
Eurofit.net,
1999
, “
Structural Integrity Assessment Procedure (SINTAP)—Final Revision
,” Brite-Euram Programme,
EU-Project BE 95-1426
.
25.
Raju
,
I. S.
, and
Newman
,
J. C. J.
,
1981
, “
An Empirical Stress-Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
,
15
(
1–2
), pp.
185
192
.
You do not currently have access to this content.