Abstract

Fluid–structure interaction (FSI) problems are important because they may induce serious damage to structures. In some FSI problems, the interaction mechanism is strongly dependent on the wave propagation across the solid–fluid interface. In this study, we attempted a quantitative evaluation of the effect of the solid surface wettability on the wave propagation across the solid–fluid interface with FSI in the case of longitudinal wave propagation vertically toward the interface. During the experiments, while the water was continuously compressed by the solid buffer motion, cavitation bubbles appeared being originated from the buffer–water interface as a result of the transmitted tensile wave propagating across the interface in a cycle. It was confirmed that interfacial boundary condition as wettability could change the wave transmission behavior owing to changes in the cavitation occurrence. It was also confirmed that the worse the wettability, the more severe the cavitation intensity, and the greater the difference between the energy lost by the buffer and the energy stored in the water. Consequently, the effect of the cavitation inception on the wave propagation at the solid–fluid interface with FSI could be quantitatively evaluated by considering the energy transferred from the solid to the water.

References

1.
Hosseini
,
R.
,
Ahmadi
,
A.
, and
Zanganeh
,
R.
,
2020
, “
Fluid-Structure Interaction During Water Hammer in a Pipeline With Different Performance Mechanisms of Viscoelastic Supports
,”
J. Sound Vib.
,
487
, p.
115527
.10.1016/j.jsv.2020.115527
2.
Keramat
,
A.
,
Fathi-Moghadam
,
M.
,
Zanganeh
,
R.
,
Rahmanshahi
,
M.
,
Tijsseling
,
A. S.
, and
Jabbari
,
E.
,
2020
, “
Experimental Investigation of Transients-Induced Fluid–Structure Interaction in a Pipeline With Multiple-Axial Supports
,”
J. Fluids Struct.
,
93
, p.
102848
.10.1016/j.jfluidstructs.2019.102848
3.
Aliabadi
,
H. K.
,
Ahmadi
,
A.
, and
Keramat
,
A.
,
2020
, “
Frequency Response of Water Hammer With fluid-Structure Interaction in a Viscoelastic Pipe
,”
Mech. Syst. Signal Process.
,
144
, p.
106848
.10.1016/j.ymssp.2020.106848
4.
Henclik
,
S.
,
2018
, “
Analytical Solution and Numerical Study on Water Hammer in a Pipeline Closed With an Elastically Attached Valve
,”
J. Sound Vib.
,
417
, pp.
245
259
.10.1016/j.jsv.2017.12.011
5.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.10.1016/j.jfluidstructs.2005.08.008
6.
Tubaldi
,
E.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2017
, “
Nonlinear Dynamics of Shells Conveying Pulsatile Flow With Pulse-Wave Propagation. Theory and Numerical Results for a Single Harmonic Pulsation
,”
J. Sound Vib.
,
396
, pp.
217
245
.10.1016/j.jsv.2017.01.044
7.
van de Vosse
,
F. N.
, and
Stergiopulos
,
N.
,
2011
, “
Pulse Wave Propagation in the Arterial Tree
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
467
499
.10.1146/annurev-fluid-122109-160730
8.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Zhang
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Fluid–Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
(
4–5
), pp.
310
322
.10.1007/s00466-006-0084-3
9.
Rajendran
,
R.
, and
Narasimhan
,
K.
,
2006
, “
Deformation and Fracture Behaviour of Plate Specimens Subjected to Underwater Explosion—A Review
,”
Int. J. Impact Eng.
,
32
(
12
), pp.
1945
1963
.10.1016/j.ijimpeng.2005.05.013
10.
Liang
,
C.-C.
, and
Tai
,
Y.-S.
,
2006
, “
Shock Responses of a Surface Ship Subjected to Noncontact Underwater Explosions
,”
Ocean Eng.
,
33
(
5–6
), pp.
748
772
.10.1016/j.oceaneng.2005.03.011
11.
Skalak
,
R.
,
1955
, “
An Extension of the Theory of Water Hammer–I
,”
Water Power
,
7
(
12
), pp.
458
462
.
12.
Skalak
,
R.
,
1956
, “
An Extension of the Theory of Water Hammer–II
,”
Water Power
, 8(
1
), pp.
17
22
.
13.
Kojima
,
T.
, and
Inaba
,
K.
,
2020
, “
Numerical Analysis of Wave Propagation Across Solid–Fluid Interface With Fluid–Structure Interaction in Circular Tube
,”
Int. J. Press. Vessels Pip.
,
183
, p.
104099
.10.1016/j.ijpvp.2020.104099
14.
Fan
,
D.
, and
Tijsseling
,
A. S.
,
1992
, “
Fluid-Structure Interaction With Cavitation in Transient Pipe Flows
,”
ASME J. Fluids Eng.
,
114
(
2
), pp.
268
274
.10.1115/1.2910026
15.
Tijsseling
,
A. S.
,
1996
, “
Fluid-Structure Interaction in Liquid- Filled Pipe Systems: A Review
,”
J. Fluids Struct.
,
10
(
2
), pp.
109
146
.10.1006/jfls.1996.0009
16.
Tijsseling
,
A. S.
, and
Vardy
,
A. E.
,
2005
, “
Fluid–Structure Interaction and Transient Cavitation Tests in a T-Piece Pipe
,”
J. Fluids Struct.
,
20
(
6
), pp.
753
762
.10.1016/j.jfluidstructs.2005.01.003
17.
Inaba
,
K.
, and
Shepherd
,
J. E.
,
2011
, “
Dynamics of Cavitating Flow and Flexural Waves in Fluid-Filled Tubes Subject to Axial Impact
,”
ASME
Paper No. PVP2010-25989. 10.1115/PVP2010-25989
18.
Schiffer
,
A.
,
Tagarielli
,
V. L.
,
Petrinic
,
N.
, and
Cocks
,
A. C. F.
,
2012
, “
The Response of Rigid Plates to Deep Water Blast: Analytical Models and Finite Element Predictions
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061014
.10.1115/1.4006458
19.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2015
, “
The Response of Circular Composite Plates to Underwater Blast: Experiments and Modelling
,”
J. Fluids Struct.
,
52
, pp.
130
144
.10.1016/j.jfluidstructs.2014.10.009
20.
Veilleux
,
J.-C.
, and
Shepherd
,
J. E.
,
2019
, “
Impulsive Motion in a Cylindrical Fluid-Filled Tube Terminated by a Converging Section
,”
ASME J. Pressure Vessel Technol.
,
141
(
2
), p.
021302
.10.1115/1.4042799
21.
Veilleux
,
J.-C.
,
Maeda
,
K.
,
Colonius
,
T.
, and
Shepherd
,
J. E.
,
2018
, “
Transient Cavitation in Pre-Filled Syringes During Autoinjector Actuation
,” Proceedings of the 10th International Symposium Cavitation, Baltimore, MA, May 14–16, Paper No.
CAV18-05213
, pp.
1068
1073
.https://colonius.caltech.edu/pdfs/VeilleuxMaedaColoniusEtAl2018.pdf
22.
Ghodhbani
,
A.
,
Akrout
,
M.
, and
Taïeb
,
E. H.
,
2019
, “
Coupled Approach and Calculation of the Discrete Vapour Cavity Model
,”
J. Fluids Struct.
,
91
, p.
102691
.10.1016/j.jfluidstructs.2019.102691
23.
Daude
,
F.
,
Tijsseling
,
A. S.
, and
Galon
,
P.
,
2018
, “
Numerical Investigations of Water-Hammer With Column-Separation Induced by Vaporous Cavitation Using a One-Dimensional Finite Volume Approach
,”
J. Fluids Struct.
,
83
, pp.
91
118
.10.1016/j.jfluidstructs.2018.08.014
24.
Bertaglia
,
G.
,
Ioriatti
,
M.
,
Valiani
,
A.
,
Dumbser
,
M.
, and
Caleffi
,
V.
,
2018
, “
Numerical Methods for Hydraulic Transients in Visco-Elastic Pipes
,”
J. Fluids Struct.
,
81
, pp.
230
254
.10.1016/j.jfluidstructs.2018.05.004
25.
Kojima
,
T.
,
Inaba
,
K.
, and
Takada
,
Y.
,
2018
, “
A Study for Theoretical Modeling of Cavitation Inducement From the Solid-Fluid Interface With Fluid-Structure Interaction
,”
ASME
Paper No. PVP2018-84811. 10.1115/PVP2018-84811
26.
Naoe
,
T.
,
Futakawa
,
M.
,
Kenny
,
R. G.
, and
Otsuki
,
M.
,
2014
, “
Experimental and Numerical Investigations of Liquid Mercury Droplet Impacts
,”
J. Fluid Sci. Technol.
,
9
(
1
), p.
JFST0002
.10.1299/jfst.2014jfst0002
27.
de Gennes
,
P.-G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2005
,
Gouttes, Bulles, Perles et Ondes
,
Belin Éditeur
,
Paris, France
.
28.
Kojima
,
T.
,
Inaba
,
K.
,
Takahashi
,
K.
,
Triawan
,
F.
, and
Kishimoto
,
K.
,
2017
, “
Dynamics of Wave Propagation Across Solid-Fluid Movable Interface in Fluid-Structure Interaction
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031308
.10.1115/1.4035376
29.
Kojima
,
T.
,
Inaba
,
K.
, and
Takahashi
,
K.
,
2015
, “
Wave Propagation Across Solid-Fluid Interface With Fluid-Structure Interaction
,”
ASME
Paper No. PVP2015-45752. 10.1115/PVP2015-45752
30.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
31.
Leighton
,
T. G.
,
1994
,
The Acoustic Bubble
,
Academic Press
,
Cambridge, UK
.
32.
Michel
,
J.-M.
, and
Franc
,
J.-P.
,
2005
,
Fundamentals of Cavitation
,
Springer
,
Dordrecht, The Netherlands
.
33.
Kojima
,
T.
,
Inaba
,
K.
, and
Takahashi
,
K.
,
2016
, “
Wave Propagation Across the Interface of Fluid-Structure Interaction With Various Surface Conditions of Solid Medium
,”
ASME
Paper No. PVP2016-63746. 10.1115/PVP2016-63746
34.
Yuan
,
Y.
, and
Lee
,
T. R.
,
2013
, “
Contact Angle and Wetting Properties
,”
Surface Science Techniques
,
G.
Bracco
, and
B.
Holst
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
3
34
.
35.
Joukowsky
,
N.
,
1900
, “
ÜBer Den Hydraulischen Stoss in Wasserleitungsrohren
,”
Mém. L'Acad. Imp. Sci. St. Pétersbourg
,
9
(
5
), pp.
1
71
. (English translation: Simin, O., 1904, “Water Hammer,” Proc. Amer. Water Works Assoc., 24(1), pp.
341
424
.
36.
Korteweg
,
D. J.
,
1878
, “
Ueber Die Fortpflanzungsgeschwindigkeit Des Schalles in Elastischen Röhren
,”
Ann. Phys.
,
241
(
12
), pp.
525
542
.10.1002/andp.18782411206
37.
Clapham
,
C.
, and
Nicholson
,
J.
,
2009
,
The Concise Oxford Dictionary of Mathematics
, 4th ed.,
Oxford University Press
,
New York
.
38.
Tijsseling
,
A. S.
,
2007
, “
Water Hammer With Fluid–Structure Interaction in Thick-Walled Pipes
,”
Comput. Struct.
,
85
(
11–14
), pp.
844
851
.10.1016/j.compstruc.2007.01.008
39.
Ando
,
K.
,
Sanada
,
T.
,
Inaba
,
K.
,
Damazo
,
J. S.
,
Shepherd
,
J. E.
,
Colonius
,
T.
, and
Brennen
,
C. E.
,
2011
, “
Shock Propagation Through a Bubbly Liquid in a Deformable Tube
,”
J. Fluid Mech.
,
671
, pp.
339
363
.10.1017/S0022112010005707
40.
McMeeking
,
R. M.
,
Spuskanyuk
,
A. V.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2008
, “
An Analytic Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels
,”
Int. J. Solids Struct
,.
45
(
2
), pp.
478
496
.10.1016/j.ijsolstr.2007.08.003
41.
Shepherd
,
J. E.
, and
Inaba
,
K.
,
2010
, “
Shock Loading and Failure of Fluid-filled Tubular Structures
,”
Dynamic Failure of Materials and Structures
,
A.
Shukla
,
G.
Ravichandran
, and
Y. D. S. Rajapakse
, eds.,
Springer
,
Boston, MA
, pp.
153
190
.
42.
Deshpande
,
V. S.
,
Heaver
,
A.
, and
Fleck
,
N. A.
,
2006
, “
An Underwater Shock Simulator
,”
Proc. R. Soc. A
,
462
(
2067
), pp.
1021
1041
.10.1098/rspa.2005.1604
You do not currently have access to this content.